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Motivation: Robustness to Dataset Shift

Examples: Income, distance 
to nearest clinic.

Observed Distribution

𝑿𝟏: Medical History 𝒀: Disease 𝑿𝟐: Symptoms

𝑨: Access to healthcare
(Unobserved)

How do changes here (e.g., due to 
differences between hospitals) 
influence our predictive models?
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Motivation: Robustness to Dataset Shift

𝑿𝟏: Medical History 𝒀: Disease 𝑿𝟐: Symptoms

𝑨: Access to healthcare
(Unobserved)

Observed Distribution

How to incorporate domain 
knowledge of plausible shifts?

How to protect against plausible 
shifts in unobserved factors?



Our contributions

Learn linear predictors that are robust to plausible interventions on 

unobserved variables, using noisy proxies at training time.
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• Setup: Linear SCMs and Shift Interventions

• Background: Robustness to bounded shift in linear models

• Contributions:

• Defining (and optimizing over) more flexible robustness sets

• Recovering guarantees with noisy proxies
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Setup: Linear SCMs and Shift Interventions

Assumptions: Linear structural causal model (SCM) over all observed and 
unobserved variables and one or more noisy proxies of A

Any causal graph over X, Y, H is 
permitted, but A is an “anchor” 
with no causal parents.

[1] Rothenhäusler, D., Meinshausen, N., Bühlmann, P., and Peters, J. Anchor regression: Heterogeneous data meet causality. Journal of the Royal Statistical Society: Series B 

(Statistical Methodology), 83(2):215–246, 2021.
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Setup: Linear SCMs and Shift Interventions

Assumptions: Linear structural causal model (SCM) over all observed and 
unobserved variables and one or more noisy proxies of A

𝐴

𝑋 𝑌

Covariate Shift

𝐴

𝑋 𝑌

Label Shift

𝐴

𝑋1 𝑌

𝑋2

…and more

Any causal graph over X, Y, H is 
permitted, but A is an “anchor” 
with no causal parents.

Unknown structure on (X, Y, H)
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Goal: Robustness to Dataset Shift

min sup
𝜈∈𝐶

𝔼𝑑𝑜 𝐴≔𝜈 [ 𝑌 − 𝛾⊤𝑋 2]𝐴

𝑋 𝑌

𝐻

𝑊 𝑍

Use noisy proxies (W, Z), only 
available at training time…

… to learn a model that minimizes a 
worst-case loss over interventions on A



High-Level Overview

• Setup: Linear SCMs and Shift Interventions

• Background: Robustness to bounded shift in linear models

• Contributions:

• Defining (and optimizing over) more flexible robustness sets

• Recovering guarantees with noisy proxies



Robustness to bounded interventions

𝐴 𝑋 𝑌

𝐻

Example: Intervention on Instrumental Variable (IV)

Modified version of Example 2 from Rothenhäusler, D., Meinshausen, N., Bühlmann, P., and Peters, J. Anchor regression: Heterogeneous data meet causality. Journal of the 

Royal Statistical Society: Series B (Statistical Methodology), 83(2):215–246, 2021.
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𝛾𝑐𝑎𝑢𝑠𝑎𝑙 = 1,  𝛾𝑂𝐿𝑆 ≠ 1



Robustness to bounded interventions

𝐴 𝑋 𝑌

𝐻

Example: Intervention on Instrumental Variable (IV)
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Linear functions with additive noise.

𝑋 = 𝐴 + 𝐻 + 𝜖𝑋 𝑌 = 𝑋 + 2𝐻 + 𝜖𝑌

Which linear predictor (𝛾 ⋅ 𝑋) to use?

𝛾𝑐𝑎𝑢𝑠𝑎𝑙 = 1,  𝛾𝑂𝐿𝑆 ≠ 1

𝑌 = 𝐴 + 𝐻 + 𝜖𝑋 + 2𝐻 + 𝜖𝑌

Note: 𝑋, 𝑌 are both linear functions of 𝐴:



Robustness to bounded interventions

𝐴 𝑋 𝑌

𝐻

Example: Intervention on Instrumental Variable (IV)

Modified version of Example 2 from Rothenhäusler, D., Meinshausen, N., Bühlmann, P., and Peters, J. Anchor regression: Heterogeneous data meet causality. Journal of the 

Royal Statistical Society: Series B (Statistical Methodology), 83(2):215–246, 2021.

Linear functions with additive noise.

𝑋 = 𝐴 + 𝐻 + 𝜖𝑋 𝑌 = 𝑋 + 2𝐻 + 𝜖𝑌

Which linear predictor (𝛾 ⋅ 𝑋) to use?

𝛾𝑐𝑎𝑢𝑠𝑎𝑙 = 1,  𝛾𝑂𝐿𝑆 ≠ 1

𝑌 − 𝛾 ⋅ 𝑋 = 1 − 𝛾 𝐴 + ⋯

Residual is a linear function of A…

Remainder does not depend on A

Causal effect yields invariant performance 
under arbitrary interventions on A



Robustness to bounded interventions

Plot: MSE of different predictors 

under interventions on 𝐴

• Ordinary least-squares (OLS)

Intervention:  Set A to a fixed value (similar 
plot holds for shift in the mean of A) 
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Robustness to bounded interventions

Plot: MSE of different predictors 

under interventions on 𝐴

• Ordinary least-squares (OLS)

• Causal effect (IV)

• Anchor Regression (AR, 𝜆 = 6)

[1] Rothenhäusler, D., Meinshausen, N., Bühlmann, P., and Peters, J. Anchor 

regression: Heterogeneous data meet causality. Journal of the Royal 

Statistical Society: Series B (Statistical Methodology), 83(2):215–246, 2021.
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Robustness to bounded interventions

Plot: MSE of different predictors 

under interventions on 𝐴

• Ordinary least-squares (OLS)

• Causal effect (IV)

• Anchor Regression (AR, 𝜆 = 6)

[1] Rothenhäusler, D., Meinshausen, N., Bühlmann, P., and Peters, J. Anchor 

regression: Heterogeneous data meet causality. Journal of the Royal 

Statistical Society: Series B (Statistical Methodology), 83(2):215–246, 2021.

Note: Anchor Regression has optimal worst-
case risk for interventions in this range [1]

𝐴 𝑋 𝑌

𝐻



Anchor Regression

[1] Rothenhäusler, D., Meinshausen, N., Bühlmann, P., and Peters, J. Anchor regression: Heterogeneous data meet causality. Journal of the Royal Statistical Society: Series B 

(Statistical Methodology), 83(2):215–246, 2021.

Idea: Trade off between invariance & in-distribution accuracy

ℓ𝐴𝑅 𝑋, 𝑌, 𝐴; 𝛾, 𝜆 = ℓ𝐿𝑆 𝑋, 𝑌; 𝛾 + 𝜆 ⋅ ℓ𝑃𝐿𝑆(𝑋, 𝑌, 𝐴; 𝛾)

𝔼[𝑅 𝛾 2] 𝔼[ 𝔼 𝑅 𝛾 𝐴 2]

𝑅 𝛾 ≔ 𝑌 − 𝛾⊤𝑋



Anchor Regression

Theorem 1 (Rothenhausler 2021)

ℓ𝐴𝑅 𝐴; 𝛾, 𝜆 = sup
𝜈∈𝐶𝐴(𝜆)

𝔼𝑑𝑜(𝐴 ≔𝜈) 𝑅 𝛾 2

𝐶𝐴 𝜆 ≔ 𝜈 ∶ 𝜈𝜈⊤ ≼ 1 + 𝜆 𝔼 𝐴𝐴⊤

[1] Rothenhäusler, D., Meinshausen, N., Bühlmann, P., and Peters, J. Anchor regression: Heterogeneous data meet causality. Journal of the Royal Statistical Society: Series B 

(Statistical Methodology), 83(2):215–246, 2021.

Least Squares Loss Penalize influence of A on the residual

ℓ𝐴𝑅 𝑋, 𝑌, 𝐴; 𝛾, 𝜆 = ℓ𝐿𝑆 𝑋, 𝑌; 𝛾 + 𝜆 ⋅ ℓ𝑃𝐿𝑆(𝑋, 𝑌, 𝐴; 𝛾)

𝔼[𝑅 𝛾 2] 𝔼[ 𝔼 𝑅 𝛾 𝐴 2]

𝑅 𝛾 ≔ 𝑌 − 𝛾⊤𝑋



High-Level Overview

• Setup: Linear SCMs and Shift Interventions

• Background: Robustness to bounded shift in linear models

• Contributions:

• Defining (and optimizing over) more flexible robustness sets

• Recovering guarantees with noisy proxies



Our contributions

Learn linear predictors that are robust to plausible interventions on 

unobserved variables, using noisy proxies at training time.
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knowledge of the shift?

E.g., moving to a hospital with a lower 

level of income, but not higher.
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Robustness to targeted interventions

Problem: What if we have more specific 

knowledge of the shift?

E.g., moving to a hospital with a lower 

level of income, but not higher.

𝐴 𝑋 𝑌

𝐻

Contribution:  We show how to adapt 

the guarantees of Anchor Regression to 

a broader class of robustness sets



Our contributions

Learn linear predictors that are robust to plausible interventions on 

unobserved variables, using noisy proxies at training time.



Robustness with noisy proxies

Problem: What happens when A is only 

observed with noise?
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Robustness with noisy proxies

Problem: What happens when A is only 

observed with noise?

Contribution: We demonstrate that proxy 

noise reduces robustness with a single proxy
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Robustness with noisy proxies

Problem: What happens when A is only 

observed with noise?

Contribution: We demonstrate that two 

proxies can be used to recover the original 

guarantees, as if A were observed

𝐴 𝑋 𝑌

𝐻𝑊

𝐴

𝑋 𝑌

𝐻 𝐴

𝑋 𝑌

𝐻

𝑊
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Our contributions

Learn linear predictors that are robust to plausible interventions on 

unobserved variables, using noisy proxies at training time.

Optimize worst-case loss over interventions 
on 𝐴 in a targeted robustness set.

Two proxies suffice to recover 
guarantees as if 𝐴 were observed.
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Aside: Considering multiple dimensions

Robustness set in 1-dimension

𝐴2: Income

𝐴1: Distance to 
closest clinic

Robustness set in multiple dimensions



Robustness to targeted interventions

𝐴2: Income

Training Example

Test Environment

Training Covariance

𝐴1: Distance to 
closest clinic



Robustness to targeted interventions

[1] Rothenhäusler, D., Meinshausen, N., Bühlmann, P., and Peters, J. Anchor regression: Heterogeneous data meet causality. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 83(2):215–246, 2021.

Training Example

Test Environment

Training Covariance

sup
𝜈∈𝐶𝐴(𝜆)

𝔼𝑑𝑜(𝐴 ≔𝜈) 𝑌 − 𝛾⊤𝑋 2

𝐶𝐴 𝜆

𝐶𝐴 𝜆

Anchor Regression [1] optimizes a worst-case loss over 
interventions in a rescaling of the covariance of A

𝐴2: Income

𝐴1: Distance to 
closest clinic

𝐶𝐴(𝜆) ≔ 𝜈 ∶ 𝜈𝜈⊤ ≼ 1 + 𝜆 𝔼[𝐴𝐴⊤]



Robustness to targeted interventions
Training Example

Test Environment

Training Covariance

[1] Rothenhäusler, D., Meinshausen, N., Bühlmann, P., and Peters, J. Anchor regression: Heterogeneous data meet causality. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 83(2):215–246, 2021.

Anchor Regression [1] optimizes a worst-case loss over 
interventions in a rescaling of the covariance of A

𝐶𝐴 𝜆

𝑇(𝜇𝜈 , Σ𝜈) ≔ 𝜈 ∶ 𝜈 − 𝜇𝜈 𝜈 − 𝜇𝜈
⊤ ≼ Σ𝜈

sup
𝜈∈𝑇(𝜇𝜈,Σ𝜈)

𝔼𝑑𝑜(𝐴 ≔𝜈) 𝑌 − 𝛾⊤𝑋 − 𝛼 2

Targeted Anchor Regression optimizes a worst-case loss 
over an arbitrary ellipsoid robustness set

𝐴2: Income

𝐴1: Distance to 
closest clinic

sup
𝜈∈𝐶𝐴(𝜆)

𝔼𝑑𝑜(𝐴 ≔𝜈) 𝑌 − 𝛾⊤𝑋 2

𝐶𝐴(𝜆) ≔ 𝜈 ∶ 𝜈𝜈⊤ ≼ 1 + 𝜆 𝔼[𝐴𝐴⊤]

𝐶𝐴 𝜆



Robustness to targeted interventions
Training Example

Test Environment

Training Covariance

[1] Rothenhäusler, D., Meinshausen, N., Bühlmann, P., and Peters, J. Anchor regression: Heterogeneous data meet causality. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 83(2):215–246, 2021.

Anchor Regression [1] optimizes a worst-case loss over 
interventions in a rescaling of the covariance of A

𝐶𝐴 𝜆

Anchor Regression is a special case
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𝐴1: Distance to 
closest clinic

sup
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Robustness to targeted interventions
Training Example

Test Environment

Training Covariance

[1] Rothenhäusler, D., Meinshausen, N., Bühlmann, P., and Peters, J. Anchor regression: Heterogeneous data meet causality. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 83(2):215–246, 2021.

Anchor Regression [1] optimizes a worst-case loss over 
interventions in a rescaling of the covariance of A

𝐶𝐴 𝜆

Anchor Regression is a special case

𝐴2: Income

𝐴1: Distance to 
closest clinic

sup
𝜈∈𝐶𝐴(𝜆)

𝔼𝑑𝑜(𝐴 ≔𝜈) 𝑌 − 𝛾⊤𝑋 2

sup
𝜈∈𝑇(𝜇𝜈,Σ𝜈)

𝔼𝑑𝑜(𝐴 ≔𝜈) 𝑌 − 𝛾⊤𝑋 − 𝛼 2

Targeted Anchor Regression optimizes a worst-case loss 
over an arbitrary ellipsoid robustness set

Controls the shape
of the robustness set

Controls the center of 
the robustness set

𝑇(𝜇𝜈 , Σ𝜈) ≔ 𝜈 ∶ 𝜈 − 𝜇𝜈 𝜈 − 𝜇𝜈
⊤ ≼ Σ𝜈

𝐶𝐴(𝜆) ≔ 𝜈 ∶ 𝜈𝜈⊤ ≼ 1 + 𝜆 𝔼[𝐴𝐴⊤]

𝐶𝐴 𝜆



Targeted Anchor Regression

Anchor Regression

ℓ𝐿𝑆 𝑋, 𝑌; 𝛾 + 𝜆 ⋅ ℓ𝑃𝐿𝑆(𝑋, 𝑌, 𝐴; 𝛾)



Targeted Anchor Regression

𝑏𝛾
⊤ ≔ 𝔼 𝑅 𝛾 𝐴⊤ 𝔼 𝐴𝐴⊤ −1

Anchor Regression

ℓ𝐿𝑆 𝑋, 𝑌; 𝛾 + 𝜆 ⋅ 𝑏𝛾
⊤𝔼 𝐴𝐴⊤ 𝑏𝛾

Intuition: Causal effect (on the 
residual) of a shift in A



Targeted Anchor Regression

ℓ𝐿𝑆 𝑋, 𝑌; 𝛾 + 𝑏𝛾
⊤ Σ𝜈 − 𝔼[𝐴𝐴⊤] 𝑏𝛾 + 𝑏𝛾

⊤𝜇𝜈 − 𝛼
2

Targeted Anchor Regression

Anchor Regression

ℓ𝐿𝑆 𝑋, 𝑌; 𝛾 + 𝜆 ⋅ 𝑏𝛾
⊤𝔼 𝐴𝐴⊤ 𝑏𝛾

Intuition: Causal effect (on the 
residual) of a shift in A

Controls the shape of 
the robustness set

Controls the center of 
the robustness set

𝑏𝛾
⊤ ≔ 𝔼 𝑅 𝛾 𝐴⊤ 𝔼 𝐴𝐴⊤ −1



Our contributions

Learn linear predictors that are robust to plausible interventions on 

unobserved variables, using noisy proxies at training time.

Optimize worst-case loss over interventions 
on 𝐴 in a targeted robustness set.

Two proxies suffice to recover 
guarantees as if 𝐴 were observed.

1

2



Assumption: Noisy Proxies

Proxies are linear functions of A 
with independent additive noise.

Example: Self-reported data on 
income, distance to closest clinic, etc.

𝐴

𝑋 𝑌

𝐻

𝑊 𝑍
𝑊 ≔ 𝛽𝑊 𝐴 + 𝜖𝑊

𝑍 ≔ 𝛽𝑍 𝐴 + 𝜖𝑍

Assumptions: Linear structural causal model (SCM) over all observed and 
unobserved variables and one or more noisy proxies of A



Single Proxy: Impact of Noise in 1D
𝐴 𝑋 𝑌

𝐻

Without noise, optimal worst-case risk for 

interventions on A up to 𝜈 < 1 + 𝝀

When A is observed directly, Anchor 

Regression minimizes the worst-case over

𝜈 < 1 + 𝜆



Single Proxy: Impact of Noise in 1D
𝐴 𝑋 𝑌

𝐻𝑊

With noisy W, optimal worst-case risk for 

interventions on A up to 𝜈 < 1 + 𝝀 ⋅ 𝝆𝑾

When A is observed directly, Anchor 
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Value of 𝜌𝑊 not generally 
identifiable from data! 



Single Proxy: Impact of Noise in 1D
𝐴 𝑋 𝑌

𝐻𝑊

When A is observed directly, Anchor 

Regression minimizes the worst-case over

𝜈 < 1 + 𝜆

Using two noisy proxies of A, we can 

recover the original guarantee

𝜈 < 1 + 𝜆

Requirement: 𝛽𝑍, 𝛽𝑊 are non-zero!
𝑊 ≔ 𝛽𝑊 𝐴 + 𝜖𝑊

𝑍 ≔ 𝛽𝑍 𝐴 + 𝜖𝑍



Impact of proxy noise in higher dimensions

[1] Rothenhäusler, D., Meinshausen, N., Bühlmann, P., and Peters, J. Anchor regression: Heterogeneous data meet causality. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 83(2):215–246, 2021.

Training Example
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Training Covariance

sup
𝜈∈𝐶𝐴(𝜆)
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𝐶𝐴 𝜆
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Anchor Regression [1] optimizes a worst-case loss over 
interventions in a rescaling of the covariance of A

𝐴2: Income

𝐴1: Distance to 
closest clinic

Theorem 1 (Informal)
Given a single noisy proxy 𝑊 of 𝐴, the robustness set is 
provably reduced, and this reduction is not identifiable.
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𝐶𝐴 𝜆

Anchor Regression [1] optimizes a worst-case loss over 
interventions in a rescaling of the covariance of A

𝐴2: Income

𝐴1: Distance to 
closest clinic

Theorem 1 (Informal)
Given a single noisy proxy 𝑊 of 𝐴, the robustness set is 
provably reduced, and this reduction is not identifiable.

Theorem 2 (Informal)
Given two noisy proxies of 𝐴, one can recover the original 
robustness set, using a modified objective

sup
𝜈∈𝐶𝐴(𝜆)

𝔼𝑑𝑜(𝐴 ≔𝜈) 𝑌 − 𝛾⊤𝑋 2
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Equivalent to the fully-observed term, 
assuming 𝛽𝑊, 𝛽𝑍 full rank

We also extend this idea to Targeted AR, allowing for 
identification of more general worst-case 
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Real Data Experiment: Pollution

Predict pollution (PM2.5) based on 

weather-related variables.  Data for 

five cities in China.
Task

We use Temperature (Celsius) as our 

anchor variable, given seasonal effects.

Setup

Evaluation: Predict on a held-out 

season, evaluate MSE.

Train/Validate: Train on 3 seasons, 

using leave-one-season-out CV to tune.  

[1] Liang, X., Li, S., Zhang, S., Huang, H., and Chen, S. X. PM2.5 data reliability, consistency, and air quality assessment in five Chinese cities. Journal of Geophysical Research: Atmospheres, 121, 2016.
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Conclusions

Broader goal: Constructing domain-specific robustness guarantees

• Specifying relevant (unobserved) causal factors via proxies

• Focusing on plausible shifts in these underlying factors

Learn linear predictors that are robust to plausible interventions on 

unobserved variables, using noisy proxies at training time.

Open Directions: Extending to general (nonlinear) causal models.


