
Theorem 2 (Informal)
Given two noisy proxies of 𝐴, one can 
recover the original robustness set, 
using a modified objective
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Motivation: Robustness to dataset shift Assumptions: Linear causal model + proxies

𝑨: Access to healthcare
(Unobserved)

Challenge:  Predictive performance may change 
due to changes in unobserved factors

Observed Distribution

𝑿𝟏: Medical Conditions 𝒀: Disease 𝑿𝟐: Lab Result

min
𝛾

sup
𝜈∈𝐶

𝐸𝑑𝑜 𝐴≔𝜈 [ 𝑌 − 𝛾⊤𝑋 2]

Goal:  Balance between in-distribution accuracy & 
robustness by minimizing a worst-case loss

Minimize worst-case loss over a 
set of interventions 

Interventions on A change the 
distribution of P(X, Y)

Robustness set 𝐶𝐴 𝜆 from Anchor 
Regression [1], when A is observed.

sup
𝜈∈𝐶𝐴(𝜆)

𝐸𝑑𝑜(𝐴 ≔𝜈) 𝑌 − 𝛾⊤𝑋 2

𝑋, 𝑌 not shown here, just the 
dimensions of 𝐴

Theorem 1 (Informal)
Given a single noisy proxy 𝑊 of 𝐴, the 
robustness set is provably reduced, and 
this reduction is not identifiable

𝐴2 : Housing Stability

Training Dist.

Test Environment

Training Covariance

𝐴1 : Access to 
Primary Care

𝐶𝐴 𝜆

𝐶𝐴 𝜆

𝐶𝑊 𝜆

Linear Structural Causal Model (SCM) over all 
variables, and noisy proxies of A
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Recovering guarantees of Anchor Regression

Targeting the robustness set to anticipated shifts

Theorem 3 (Informal)
We generalize to a larger class of 
robustness sets, and prove that the 
minimizer is identified with two proxies

𝐴2 : Housing Stability

𝐴1 : Access to 
Primary Care

𝐶𝐴 𝜆

Previous Work:  Anchor Regression [1] assumes 
that A is observed during training.  What can we 
do when A is not observed directly?

Linear Structural Causal Model (SCM) over all variables

𝑋1 = 𝛽1𝐴 + 𝜖𝑋1
𝑌 = 𝛽2𝑋1 + 𝛽3𝐴 + 𝜖𝑌
𝑋2 = 𝛽4𝑌 + 𝛽5𝐴 + 𝜖𝑋2

Example
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Unknown causal graph for X, Y, and hidden variables H.

A has no causal parents, but otherwise any causal graph over X, Y, H
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Examples

Code available at github.com/clinicalml/proxy-anchor-regression

𝑍 = 𝛽𝑍
⊤𝐴 + 𝜖𝑍

𝑊 = 𝛽𝑊
⊤𝐴 + 𝜖𝑊

Proxies (available only during training) give independent views of A

𝑊𝑍

𝐴

𝑋 𝑌

𝐻
Noise terms are jointly independent 

Linear terms must be full rank to recover guarantees as if A were 
observed: Z, W, A must have the same dimension.

Motivation: What if we have some 
prior knowledge?  For instance, 
moving to a hospital that serves a 
population with less access to 
healthcare & housing?

𝐶𝐴 𝜆 ≔ 𝜈 ∶ 𝐸[𝜈𝜈⊤] ≼ 1 + 𝜆 𝐸 𝐴𝐴⊤

𝑇(𝜇, Σ) ≔ 𝜈 ∶ 𝐸[ 𝜈 − 𝜇 𝜈 − 𝜇 ⊤] ≼ Σ

sup
𝜈∈𝑇(𝜇,Σ)

𝐸𝑑𝑜(𝐴 ≔𝜈) 𝑌 − 𝛾⊤𝑋 2

𝑇(𝜇, Σ)

https://www.github.com/clinicalml/proxy-anchor-regression

