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Motivation: Robustness to dataset shift

Challenge: Predictive performance may change
due to changes in unobserved factors
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Goal: Balance between in-distribution accuracy &
robustness by minimizing a worst-case loss
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Minimize worst-case loss over a
set of interventions

Interventions on A change the
distribution of P(X, Y)

Previous Work: Anchor Regression [1] assumes
that A is observed during training. What can we
do when A is not observed directly?

Assumptions: Linear causal model + proxies

Linear Structural Causal Model (SCM) over all
variables, and noisy proxies of A

A has no causal parents, but otherwise any causal graph over X, Y, H
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Unknown causal graph for X, Y, and hidden variables H.

Linear Structural Causal Model (SCM) over all variables
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Proxies (available only during training) give independent views of A
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Linear terms must be full rank to recover guarantees as if A were
observed: Z, W, A must have the same dimension.

Recovering guarantees of Anchor Regression

A4 : Access to
Primary Care
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Robustness set C4(A) from Anchor
Regression [1], when A is observed.
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Theorem 1 (Informal)

Given a single noisy proxy W of A, the
robustness set is provably reduced, and
this reduction is not identifiable

Theorem 2 (Informal)

Given two noisy proxies of 4, one can
recover the original robustness set,
using a modified objective

A, : Housing Stability

X,Y not shown here, just the
dimensions of 4

Targeting the robustness set to anticipated shifts

A4 : Access to
Primary Care

Motivation: What if we have some
prior knowledge? For instance,
moving to a hospital that serves a
population with less access to
healthcare & housing?

Theorem 3 (Informal)

We generalize to a larger class of
robustness sets, and prove that the
minimizer is identified with two proxies
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T(w2) ={v:E[(v-wv-w'] <2}

A, : Housing Stability

Code available at github.com/clinicalml/proxy-anchor-regression
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https://www.github.com/clinicalml/proxy-anchor-regression

