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Abstract

Inspired by a growing interest in applying reinforcement learning (RL) to healthcare,
we introduce a procedure for performing qualitative introspection and ‘debugging’ of
models and policies. In particular, we make use of counterfactual trajectories, which
describe the implicit belief (of a model) of ‘what would have happened’ if a policy
had been applied. These serve to decompose model-based estimates of reward into
specific claims about specific trajectories, a useful tool for ‘debugging’ of models and
policies, especially when side information is available for domain experts to review
alongside the counterfactual claims. More specifically, we give a general procedure
(using structural causal models) to generate counterfactuals based on an existing
model of the environment, including common models used in model-based RL. We
apply our procedure to a pair of synthetic applications to build intuition, and con-
clude with an application on real healthcare data, introspecting a policy for sepsis
management learned in the recently published work of Komorowski et al. (2018).
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Title: Associate Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

1.1 Reinforcement Learning in Healthcare: A Challeng-

ing Task

There is a long tradition of using data to improve healthcare and public health,

from randomized trials to test the efficacy of new drugs, post-market surveillance for

adverse drug interactions, and the practice of epidemiology more broadly, e.g., the use

of observational studies to understand the public health impact of everything from

cigarettes to air pollution. Over the past decade in the United States, there has also

been an ever-expanding amount of raw healthcare data, driven by the rapid adoption

of electronic medical records (EMRs). As the available data has expanded, so have

the ambitions of some segments of the research community, fuelled by the hope that

larger and richer datasets can lead to breakthroughs in personalized medicine.

With that in mind, there has been a growing interest in the application of machine

learning to healthcare, not only for diagnostic purposes (e.g., image processing in

radiology and pathology), but also for learning better treatment policies, tailored to

individual patients. This requires solving two closely related subproblems: First, how

to learn a policy from observational (that is, retrospective) data, and second, how to

evaluate it.

For sequential decision-making settings in healthcare, where a dynamic treatment
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policy1 is required, several recent papers have used techniques from reinforcement

learning (RL) to try and learn optimal policies for treating everything from sepsis

(Raghu et al., 2017, 2018; Komorowski et al., 2018; Peng et al., 2018) to HIV (Parbhoo

et al., 2017) and epilepsy (Guez et al., 2008). This is a challenging task, in ways

that are quite different from modern success stories in reinforcement learning, such as

achieving super-human performance at board games (Silver et al., 2018). The latter is

a task that can be perfectly simulated, allowing for the (massive-scale) exploration and

direct evaluation of different policies in a deterministic setting. In contrast, medicine

is a stochastic, partially observable environment where direct experimentation by an

algorithm would not be tolerable. As a result, we cannot simply try many policies

and see if they work, but need to infer how a new policy would perform, using data

collected under an older, different policy. In the RL literature, this is known as

off-policy evaluation.

Of course, researchers in RL are not the first to have encountered this challenge.

The evaluation of dynamic treatment policies (using observational data) is a well-

studied causal inference problem in epidemiology and biostatistics, which is generally

addressed with the application of g-methods, first introduced by Robins (1986). Lodi

et al. (2016) and Zhang et al. (2018) are two recent examples, using g-methods to eval-

uate HIV treatment and anemia management strategies respectively. The techniques

used in RL to evaluate novel treatment policies have much in common with these

techniques, such as modelling the environment directly or re-weighting the observed

data, as discussed in Chapter 2.

Quantitative evaluation is nonetheless fraught with difficulties that no mathemat-

ical method can address without making assumptions. For instance, if important

variables are not measured (such as confounding variables, discussed in Section 2.1),

then quantitative evaluation can give misleading results. These and other challenges,

such as small effective sample sizes and miss-specification of reward, are discussed at

length in Gottesman et al. (2019a).

1A dynamic treatment policy is one which takes intermediate outcomes into account, like stopping
a medical treatment when a patient has an adverse reaction
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Finally, a wealth of data exists in settings (e.g., EMRs, mobile health) that are not

curated by any means, and are certainly not designed primarily for research purposes.

This complicates matters further, and stands in contrast to research done with curated

data registries, such as the US Renal Data System, used in Zhang et al. (2018),

or sequentially randomized trials, such as the Strategic Timing of AntiRetroviral

Treatment (START) trial, analyzed in Lodi et al. (2016).

1.2 Motivation: Debugging Policies and Models

Quantitative evaluation of policies can therefore be misleading for any number of

reasons: There may exist unmeasured confounding in the dataset, the reward function

(that is, the objective to be optimized) may be poorly specified, or there may not exist

sufficient samples to evaluate policies that diverge too much from existing practice.

Creating more robust methods for off-policy evaluation is an area of active research

(Gottesman et al., 2019b; Liu et al., 2018; Kallus & Zhou, 2018), but a fundamental

uncertainty remains.

Moreover, it may be difficult to inspect a policy directly, to determine whether or

not it seems reasonable: In contrast to the epidemiological studies mentioned earlier

(Zhang et al., 2018; Lodi et al., 2016) which pre-specify a dynamic policy to evaluate

based on domain knowledge, it is not always clear what a reinforcement-learned policy

is doing. In Raghu et al. (2017), for instance, the policy is parameterized by a neural

network, and in Komorowski et al. (2018), the policy associates an action with each

of 750 patient state clusters derived via k-means clustering.

With that in mind, consider the following hypothetical: Suppose that you have

the power to change medical practice, and are given a complex policy which is claimed

(e.g., due to off-policy evaluation) to perform far better than existing clinical guide-

lines. How might you proceed? Given the challenges of retrospective evaluation, you

might want to test the policy prospectively, perhaps using a randomized trial. But

before you did that, you would want to better understand the policy, before investing

a large amount of time and money in a gold-standard evaluation. In essence, you may

13



wish to search for ‘bugs’ in the policy (like a tendency to take dangerous actions), or

the model used to generate it (like the omission of a critical input), and iterate until

you are confident that the policy has learned something reasonable.

There are a variety of ways you could do this, even if the policy is too complex to be

interpretable directly. For instance, a physician might randomly select some real pa-

tients, pull up their full medical record, and compare the actions taken by the doctors

to the recommendations of the learned policy, to see if they seem reasonable. Jeter

et al. (2019) perform such an analysis in their critique of Komorowski et al. (2018),

highlighting a sepsis patient where the learned policy makes a counter-intuitive deci-

sion to withhold treatment during a critical hypotensive episode. However, manual

inspection of randomly selected trajectories may be inefficient, and difficult to inter-

pret without more information: If we are to discover new insights about treatment,

shouldn’t there be some disagreement with existing practice?

This poses two problems: First, how do you surface the ‘rationale’ of a policy? In

an ideal world, we could elicit a justification for each action. We refer to this as the

challenge of policy introspection. Second, supposing that you could elicit these justi-

fications en masse across all trajectories, how would you select the most interesting

case examples for manual inspection?

1.3 Counterfactual Policy Introspection

In this thesis, we give a procedure that uses counterfactual trajectories to address

both of these questions, and refer to this procedure as counterfactual policy introspec-

tion. Given a policy and a learned model of the environment, we provide a post-hoc

method to generate counterfactual trajectories for each observed (or ‘factual’) tra-

jectory, which attempt to describe what the model expects would have happened,

in hindsight, if that policy had been used. We note that this is most useful in ap-

plications that already require the learning of a model of the environment, such as

in model-based reinforcement learning. We can then compare counterfactual trajec-

tories with observed trajectories, potentially with additional side-information (e.g.,
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chart review in the case of a patient) so that domain experts can “sanity-check” a

policy and the model used to learn it. In a way that we make precise in Section 3.2, if

these counterfactuals are obviously wrong, then it provides evidence that the learned

model of the environment is flawed.

Thus, our end-to-end procedure for ‘debugging’ models and policies is as fol-

lows, illustrated in Figure 1-1: First, once we have counterfactual trajectories for

each observed trajectory, we can highlight episodes where there are surprisingly large

differences between the factual and counterfactual outcomes. Second, we can then

perform manual examination of the observed and counterfactual trajectories, to iden-

tify disagreements between the learned policy and existing practice, and to try and

understand the rationale for them. Critically, because these are real patients, we

can also go look for additional information to ‘kick the tires’ of the counterfactual

conclusions. Finally, we can use our findings to iterate on the model and policy. For

instance, looking at the medical record may suggest new variables to include in our

model of the environment, at which point we can repeat the process again.

1 Decomposition of reward 
over real episodes, to 
identify interesting cases

Approach

2 Examine counterfactual 
trajectories under new policy

3 Validate and/or criticize 
conclusions, using full patient 
information (e.g., chart review)

Example

Suggests episodes for 
further inspection

Figure 1-1: Conceptual overview of our approach: First, counterfactual trajectories
are generated for all observed trajectories, and are then used to guide manual inspec-
tion. The figure on the right is taken from a synthetic example of sepsis management
in Section 6.2, and highlights patients who died, but who would have allegedly lived in
the counterfactual.
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We stress that these counterfactuals are conceptually distinct from the simulation

of new trajectories using a learned model of the environment. In particular, we don’t

want to know what the model believes might generally occur under a different policy:

We want to know what would have been different in a specific trajectory. In Figure 1-

2 we give a conceptual example of this distinction, in line with the medical use case

described above. In this example, we imagine an observed trajectory where the patient

had a rare, adverse reaction to an antibiotic. In a model-based simulation (or ‘roll-

out’), what might occur? Since the reaction is rare, then a model-based simulation

might reasonably predict the most common outcome for patients in general (that the

infection is cleared). Naturally, this does not satisfy our intuition for what would have

happened to this specific patient (we already know!), but a model-based simulation is

not designed to satisfy this intuition. A counterfactual trajectory, on the other hand,

is designed to take into account what actually occurred to this patient, in a way that

will be made precise in Section 2.3.

Moreover, counterfactual trajectories incorporate strictly more information about

the observed trajectory, and thus exhibit less variance than a freshly simulated tra-

jectory from a model. This is illustrated in a toy 2D grid-world setting in Figure 1-3,

where the counterfactual trajectories in the left-hand figure (in blue) overlap perfectly

with the observed trajectory (in black) when the actions are identical, and exhibit

little variability even after actions diverge. This is in contrast to the simulated tra-

jectories in the right-hand figure (in red), which borrow no information from the

observed trajectory, and thus are different from the beginning, even under identical

actions. This example is discussed in far more depth in Section 6.1.2.

Returning to our motivating example of evaluating a complex treatment policy, it

is worth repeating that these counterfactuals may be obviously wrong, especially if

we go to the medical record and use additional side information to check it against our

intuition. This is a feature, not a bug, of our approach: In a setting where the model

used for counterfactual evaluation is the same model that was used to train the policy,

this can be used to confirm that suspicious actions (e.g., withholding treatment) are
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If the new policy had been applied to this patient…

Antibiotics

…patient 
has infection

𝑆0

𝐴1

Time

Antibiotics Mechanical 
Ventilation

Sedation

…patient 
has infection

…drug 
reaction

…significant 
agitation

𝑆: State
𝐴: Action

𝐴1 𝐴2 𝐴3

…infection 
cleared

𝑆1

Model-based rollout 
not a fair comparison

If the new policy had been applied to this patient…

Antibiotics

…patient 
has infection𝑆0

𝐴1

Time

Antibiotics Mechanical 
Ventilation

Sedation

…patient 
has infection

…drug 
reaction

…significant 
agitation

𝑆: State
𝐴: Action

𝐴1 𝐴2 𝐴3

𝑆1
…drug 
reaction

Counterfactual influenced 
by actual outcome

Figure 1-2: In this example, we imagine an observed trajectory where the patient
had a rare, adverse reaction to an antibiotic. In a model-based roll-out, even if the
trajectory is started in the same state, with the same initial action, it is unlikely that
all model-based roll-outs will include this adverse event. Thus, the model-based roll-out
is harder to critique: Perhaps the model is correct, and this patient just got unlucky.
A counterfactual trajectory, on the other hand, is designed to isolate differences which
are due to differences in actions.

based on a faulty model of the world, versus a real insight into the best treatment.2

In a model-based simulation, by contrast, this is difficult to ascertain: Was the model

wrong, or was this patient just one of the unlucky ones?

However, towards generating these counterfactual trajectories, we have to deal

2We make this intuition precise in Section 3.2
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G

B1, T1

B2

T2

Factual
Counterfactual

(a)

G

B1, T1

B2

T2

Factual
Model-Based (Prior)

(b)

Figure 1-3: A visual example of how counterfactuals isolate differences that are due
solely to divergence in actions from the factual, taken from Section 6.1.2. The black
line represents an observed trajectory, whereas the blue and red lines represent coun-
terfactual trajectories and model-based simulations, respectively

with a fundamental issue of non-identifiability: As we show in Section 4.1, even with

an infinite amount of interventional data, there are multiple structural causal models

(as introduced in Section 2.3) which are consistent with with the data we observe,

but which suggest different distributions of counterfactual outcomes on an individual

level. This is not a new problem, and a common assumption in the binary setting

to identify counterfactuals is the monotonicity condition (Pearl, 2000). However, to

our knowledge, there is no analogous condition for the categorical case, as would be

required to generate counterfactuals in discrete state-space models of the environment.

This motivates our main theoretical contribution, which is two-fold. First, we

introduce a general condition of counterfactual stability for structural causal models

(SCMs) with categorical variables and prove that this condition implies the mono-

tonicity condition in the case of binary categories. Second, we introduce the Gumbel-

Max SCM, based on the Gumbel-Max trick for sampling from discrete distributions,

and demonstrate that it satisfies the counterfactual stability condition. We note that

any discrete probability distribution can be sampled using a Gumbel-Max SCM; As
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a result, drawing counterfactual trajectories can be done in a post-hoc fashion, given

any probabilistic model of dynamics with discrete states. To conclude, we restate our

main contributions, which are as follows:

1. Using Counterfactuals for Policy Introspection and Model-Checking: Our

main conceptual contribution is the procedure described above, using coun-

terfactual trajectories as a tool for introspection of learned policies and models.

Additionally, we build on the theoretical results of (Buesing et al., 2019) in Sec-

tion 3.2 to note that the expected counterfactual reward over all factual episodes

(if the SCM is correctly specified) is in fact equal to the expected reward using

freshly simulated trajectories. In this way, if counterfactual conclusions are in-

correct on their face, it casts suspicion on the learned model of dynamics used

in the first place, and any quantitative estimate of reward (as derived through

e.g., the parametric g-formula, discussed in Section 2.1) that it yields.

2. Counterfactual Stability and Gumbel-Max SCMs: Our main theoretical con-

tribution is twofold: First, we introduce the property of counterfactual stability

for SCMs with categorical variables, and prove that this condition implies the

monotonicity condition (Pearl, 2000) in the case of binary categories. Second,

we introduce the Gumbel-Max SCM, a general SCM for categorical variables

which we prove to satisfy the counterfactual stability condition. We note that

any discrete probability distribution can be sampled using a Gumbel-Max SCM;

As a result, drawing counterfactual trajectories can be done in a post-hoc fash-

ion, given any probabilistic model of dynamics with discrete states.

3. Application to a Real-World Setting: In addition to a series of synthetic exam-

ples, we replicate the work of Komorowski et al. (2018) in learning a policy for

sepsis management using EMR data. We apply counterfactual policy introspec-

tion with the assistance of a domain expert (in this case, a clinician), including

the review of specific counterfactual trajectories using the full medical record

as side information.
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1.4 Structure of this Thesis

• Background (Chapter 2): We review the interrelated problems of learning

and evaluating a dynamic policy, drawing connections between the literature

on causal inference and model-based reinforcement learning. We also review

the concepts necessary for generating counterfactuals, such as structural causal

models. We draw a distinction between counterfactual and interventional distri-

butions, and highlight both the inherent non-identifiability of counterfactuals,

as well as the monotonicity assumption used to identify them in the binary case.

• Counterfactual Decomposition of Reward (Chapter 3): We begin by demon-

strating how common causal models assumed in the RL literature (MDPs and

POMDPS) can be cast as structural causal models. We further discuss the

connection between counterfactual estimates of rewards and notions like CATE

and ITE in the causal inference literature. We conclude by building on the the-

oretical results of (Buesing et al., 2019) in Section 3.2 to note that the expected

counterfactual reward over all factual episodes (if the SCM is correctly specified)

is in fact equal to the expected reward using freshly simulated trajectories.

• Gumbel-Max SCMs for Categorical Variables (Chapter 4): With the motiva-

tion from Chapter 3 in mind, in this chapter we introduce our core theoretical

contributions. First, we introduce the property of categorical stability as a cate-

gorical analog of the montonicity assumption. Then, we introduce and motivate

the Gumbel-Max SCM by proving that it satisfies this property. We also high-

light connections to the discrete choice literature, which are useful for building

intuition around the counterfactual stability condition.

• SCMs with Additive Noise for Continuous Variables (Chapter 5): In this brief

chapter, we highlight some possible approaches for developing general SCMs for

continuous variables, by examining common continuous state-space models in

RL and giving an SCM which is consistent with their formulation.

• Illustrative Applications with Synthetic Data (Chapter 6): To build intuition,
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we demonstrate the use of counterfactual trajectories in two idealized environ-

ments: A 2D grid-world and an illustrative simulator of sepsis. The former

builds intuition for how counterfactual inference works in SCMs, while the lat-

ter demonstrates our proposed use of counterfactuals for policy introspection.

• Real-Data Case Study: Sepsis Management (Chapter 7): In this chapter, we

replicate the work of Komorowski et al. (2018) using real EMR data to learn

a policy of sepsis management, and we apply our proposed methodology to

perform introspection of the resulting policy. Most notably, we use the full

medical record and the help of a clinician to examine counterfactuals for a

particular trajectory, and discuss our insights from this exercise in Section 7.4.

21



22



Chapter 2

Background

In this chapter, we lay out the necessary background for the later chapters. Broadly

speaking, we start by discussing the central problem of learning how to act from data.

This is intrinsically a causal question: We would like to claim that if we acted in a

particular way, this would bring about a particular outcome. Thus, in Section 2.1,

we discuss some basic principles of causal inference, starting with the simplest case of

estimating the effect of a binary action from interventional data (as in a randomized

control trial), before moving on to techniques used to estimate the effect of dynamic

treatment regimes from observational data. We highlight in particular some general

classes of methods: Those which model the causal relationships directly, those which

rely on re-weighting the data, and those which combine the two approaches.

With this background in hand, we turn to the problem of learning a policy from

data, and highlight methods used in the reinforcement learning (RL) community

for doing so in Section 2.2. We draw an explicit connection to the literature on

dynamic treatment regimes, noting that RL methods can be viewed as assuming a

particular causal graph with a certain Markov structure. With this assumption in

mind, we discuss a basic method for learning an optimal policy, known as Policy

Iteration, which falls under the general class of RL methods which are ‘model-based’,

in that they assume access to a model of the environment. We then discuss two

approaches in the RL literature for evaluating policies that are different from the

one that generated the data, a problem known as off-policy evaluation: The first of
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these methods, known as model-based off-policy evaluation (MB-OPE) bears some

similarity to the g-formula used in the literature on evaluating dynamic treatment

regimes. The second method is a re-weighting method, which is similar to inverse

propensity (IP) weighting methods, another set of g-methods.

Finally, we introduce the notion of counterfactuals in Section 2.3, where we formal-

ize the distinction between interventional questions, like ‘what will happen if I apply

policy X’, and counterfactual questions, like ‘what would have happened if I had ap-

plied policy X, given that I applied policy Y and observed outcome Z’. To do so,

we introduce the mathematical framework of structural causal models, and highlight

the challenges inherent in estimating counterfactuals, which are by definition never

observed. We note that this is a different (and strictly more challenging) problem

than the usual causal inference question, because it deals with individual-level coun-

terfactuals (analogous to the individual treatment effect), instead of population-level

causal effects (analogous to the conditional average treatment effect).

We refer the reader to several reference on the above topics for more detail, in

lieu of attempting to reproduce the entirety of these fields within the confines of

this thesis. In particular, we recommend Hernan & Robbins (2019) for an overview

of causal inference with dynamic treatment regimes, and Pearl (2009); Peters et al.

(2017) for an overview of causal graphs and structural causal models. For a general

overview of reinforcement learning, we recommend Sutton & Barto (2017).

2.1 Causal Inference from Observational Data

2.1.1 Motivating Example: Binary Treatments

Suppose that we want to evaluate the causal effect of a binary action, such as taking

an antibiotic, on a binary outcome, such as whether or not an infection is cleared.

Let 𝑇 ∈ {0, 1} represent the action (whether or not we gave the treatment), and

let 𝑌 ∈ {0, 1} represent the outcome. Suppose we also have access to covariates

/ features 𝑋 which describe potential confounding factors, so-called because they
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influence both the treatment decision and the outcome. For any given individual, we

can use 𝑌1 and 𝑌0 to represent the potential outcomes (Morgan & Winship, 2014)

under the treatment and control respectively, of which we only observe one of the

two, e.g., 𝑌 = 𝑌1𝑇 +𝑌0(1−𝑇 ). We can also denote this set-up using a causal graph, a

directed acyclic graph (DAG) which encodes the causal relationships between random

variables (Pearl, 2009). In this case, the corresponding DAG is given in Figure 2-1,

with arrows that represent the causal relationships between variables.

𝑌𝑇

X

Figure 2-1: Causal graph corresponding to the motivating example of a binary treat-
ment and binary outcome

In this example, we might be interested in the average treatment effect (ATE),

which can be denoted by

𝜏 = E[𝑌 |𝑑𝑜(𝑇 = 1)]− E[𝑌 |𝑑𝑜(𝑇 = 0)],

where the 𝑑𝑜(·) operator is used to indicate an intervention. The 𝑑𝑜(·) operator

is reviewed in (Pearl, 2009), and is accompanied by the rules of do-calculus, which

give us a set of conditions which specify when (and how) it is possible to obtain

causal relationships, like P(𝑌 |𝑑𝑜(𝑇 = 𝑡)), from observed conditional relations like

P(𝑌 |𝑇 = 𝑡). Intuitively, the ATE corresponds to the expected difference in outcome

between two policies, where we treat everyone E[𝑌 |𝑑𝑜(𝑇 = 1)] or we treat no one

𝐸[𝑌 |𝑑𝑜(𝑇 = 0)]. In the simplest case, if the treatment assignment is randomized such

that P(𝑇 |𝑋) = P(𝑇 ), then we have the equivalence E[𝑌 |𝑑𝑜(𝑇 = 𝑡)] = E[𝑌 |𝑇 = 𝑡]. For

instance, in an ideal randomized control trial with full compliance, we could estimate

the causal effect by simply looking at the difference in outcome between the treatment

and control groups.
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2.1.2 Dealing with Observational Data

It should be noted that causal inference requires assumptions, which are often not

empirically verifiable. For instance, if treatment assignment is not randomized, as is

typical for observational data, a common approach is to first make the assumption

of no unmeasured confounding : That is, we assume that we observe, through 𝑋, all

of the variables which impact both the treatment and the outcome. We refer the

reader to a variety of references (Hernan & Robbins, 2019; Pearl, 2009; Morgan &

Winship, 2014; Imbens & Rubin, 2015) for a more comprehensive treatment of the

topic, but we will briefly highlight three broad approaches, which have analogs in the

reinforcement learning literature.

• First, we can model the conditional relationships directly, by estimating P(𝑌 |𝑋,𝑇 ),

which is equivalent to P(𝑌 |𝑋, 𝑑𝑜(𝑇 )) under the assumption of no unmeasured

confounding, and use this to calculate P(𝑌 |𝑑𝑜(𝑇 )) =
∫︀
P(𝑌 |𝑋,𝑇 )P(𝑋)𝑑𝑥 by

marginalizing over 𝑋. This is known as standardization in epidemiology.

• Second, we can re-weight the data to create a psuedo-population that approxi-

mates the results of a randomized trial. For instance, we might use an estimate

of the treatment probability P(𝑇 |𝑋), known as the propensity score, and use

this to re-weight our observations (Rosenbaum & Rubin, 1983), or stratify into

sub-populations with similar propensity (Rubin & Rosenbaum, 1984). The more

general form of this approach (discussed below) is known as inverse probability

(IP) weighting in epidemiology.

• Finally, we can combine the two approaches above to develop doubly-robust esti-

mators (Bang & Robins, 2005), which provide asymptotically correct estimates

if we can correctly estimate either P(𝑌 |𝑋,𝑇 ) or P(𝑇 |𝑋).

2.1.3 ATE, CATE, and ITE

So far, we have implicitly focused on a very simple decision-making problem, by

focusing on the estimation of the ATE. In effect, this corresponds to evaluating the
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difference in the expected outcome between two policies: ‘Treat everyone’ and ‘treat

no one’. In the notation of potential outcomes, introduced in Section 2.1.1, the ATE

corresponds to the quantity

𝜏 = E[𝑌1 − 𝑌0]

We can refine this further by investigating the conditional average treatment effect

(CATE), which conditions on a specific subpopulation 𝑋, and can be denoted by the

quantity

𝜏𝑥 = E[𝑌1 − 𝑌0|𝑋]

In the causal graph given in Figure 2-1, this can (in principle) be estimated directly

using regression models 𝑓(𝑋,𝑇 ) ≈ E[𝑌 |𝑋,𝑇 ] since 𝑃 (𝑌 |𝑋, 𝑑𝑜(𝑇 )) = 𝑃 (𝑌 |𝑋,𝑇 ) in

this case. How does this relate to learning a policy? In this simple setting, learning

a policy follows naturally from evaluating the effect of the binary treatment. For

instance, once we have learned the CATE, we can devise a policy which treats each

patient (with covariates 𝑋) based on the sign of the estimated CATE 𝜏𝑥.

Note that there is a conceptual distinction between the CATE and what we will

refer to as the individual treatment effect (ITE), which is simply the difference in

potential outcomes, denoted for an individual 𝑗 by

𝜏
(𝑗)
𝑖𝑡𝑒 = 𝑌

(𝑗)
1 − 𝑌

(𝑗)
0

Unlike the ATE and CATE, this represents a statement about a specific individual,

versus an expectation over a population. This can be a source of confusion when

it comes to the use of counterfactual language: It is not uncommon to estimate the

CATE and refer to this as a counterfactual or to refer to the CATE as the ITE (see

Shalit et al. (2016) and discussion in Appendix B of Liu et al. (2018)).

Note that in this thesis, we will reserve the language of counterfactuals and coun-

terfactual inference to refer to individual-level quantities, like 𝑌
(𝑗)
0 , 𝑌

(𝑗)
1 .
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2.1.4 Extension to Dynamic Treatment Policies

Many of the methods which were originally developed for the simple setting described

above do not work (when applied naively) to the setting where we wish to evaluate

a dynamic treatment. In this setting, our initial action may have some intermediate

effect which influences our choice of later actions, and so on. Robins (1986) introduced

a class of general methods for adjustment in this setting, which are referred to g-

methods in the dynamic treatment regime literature. Among these, we highlight two

methods which are analogs to those discussed previously:

• First, the g-computation algorithm formula, typically referred to as the g-formula,

is a generalization of the standardization approach given in Section 2.1.2. Sim-

ply put, the conceptual approach is to estimate the outcome under a specific

policy by simulating from a model of the overall environment. The g-formula is

widely used in epidemiology, where it is referred to as the parametric g-formula

when it involves fitting a parametric model of the environment. For instance,

Lodi et al. (2016) use this approach to evaluate a policy for HIV treatment, and

Zhang et al. (2018) use it to evaluate a strategy for anemia management.

• Second, the class of inverse probability (IP) weighting methods, which gener-

alize the re-weighting methods discussed previously, such as propensity score

re-weighting (Rosenbaum & Rubin, 1983). See (Hernan & Robbins, 2019) for

a more in-depth discussion, including the combination of IP weighting methods

with marginal structural models.

2.2 Model-Based Reinforcement Learning

With all of this in mind, we shift gears to a different set of literature, namely that

of reinforcement learning (RL). In contrast to the above sections, where our focus

was on evaluating a policy based on observational data, reinforcement learning has

its roots in trying to learn a policy efficiently, when given the ability to experiment

freely in an environment. We cannot hope to summarize all the extant techniques
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that exist for learning and evaluation in RL, but instead highlight those which are

relevant for future chapters, as well as for understanding where our approach fits in.

Seen in relationship to the literature on dynamic treatment regimes, the reinforce-

ment learning literature tends to assume a particular type of causal graph, a Markov

Decision Process (MDP), which we describe in Section 2.2.1. While this assumption is

shared across techniques used to learn a policy, there is a further distinction between

methods which are model-based, which rely on learning to model the MDP, versus

those that are ‘model-free’, in the sense that they do not model the environment di-

rectly. The techniques discussed in this thesis require a model of the environment, and

thus we will focus our discussion in Section 2.2.2 on a simple model-based approach

to learning a policy, known as Policy Iteration.

Finally, we discuss two broad types of evaluation, which have connections to the

two classes of evaluation methods discussed in the previous section: First, model-

based off-policy evaluation (MB-OPE), which can be seen as a specific instance of

simulation via the g-formula, and importance re-weighting methods such as weighted

importance sampling (WIS), which can be seen as instances of the inverse probability

weighting approach described earlier.

2.2.1 Markov Decision Processes (MDPs and POMDPs)

The reinforcement learning literature tends to assume an underlying model of the

world which can be represented as having a Markov structure, meaning that the state

of the world in the future is independent of the past, given the present (observable)

state. This leads to a representation which is known as a Markov Decision Process

(MDP). This can be relaxed by assuming that there exists an underlying Markov

structure, but we may not observe it, in which case it is considered a partially observ-

able Markov Decision Process (POMDP). In this section we describe these general

models, as a prelude to discussing their role in both learning and evaluation.

We follow the description of Finite Markov Decision Processes (MDPs) given in

Sutton & Barto (2017), to which we refer the reader for more information. In this

setting, the decision-maker (or agent) interacts with an environment at each discrete
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time step. The decision maker is presented with a state 𝑆 ∈ 𝒮, and chooses an action

𝐴 ∈ 𝒜, which result in a new state 𝑆 ′ ∈ 𝒮 as well as a quantitative reward 𝑅 ∈ ℛ, and

the process continues until an absorbing state is reached, or until a fixed time (known

as a fixed-horizon MDP). These states, actions, and rewards are typically indexed

by time, and follow the conditional probability distribution (CPD) that governs the

MDP, and which is referred to (in this work) as the dynamics of the process:

P(𝑆𝑡+1, 𝑅𝑡|𝑆𝑡, 𝐴𝑡) (2.1)

Note that the CPD in Equation (2.1) is Markov in the sense that the next state /

reward only depend on the previous state and action, hence the moniker of a Markov

Decision Process. Furthermore, this CPD is often assumed to be invariant to the time

index, in which case we refer to this as a homogenous MDP. Finally, when the state

space 𝒮 has finite cardinality, we refer to this as a finite MDP.

The goal of the decision-maker at time 𝑡 is typically to maximize the discounted

expected reward over the future states. This is typically denoted as follows1

𝐺𝑡 :=
∞∑︁
𝑘=0

𝛾𝑘𝑅𝑡+𝑘+1 (2.2)

In Equation (2.2), the discount factor 0 ≤ 𝛾 ≤ 1 determines the degree to which future

rewards are less valuable than immediate rewards, and this notation can be used to

cover episodes which have a finite horizon or terminal states, using the assumption

that after the horizon or a terminal state is reached, the subsequent rewards are all

zero.

Thus, the goal of the decision-maker is to choose a policy 𝜋 which maximizes the

expected reward. This policy can either be deterministic, in which case 𝜋 : 𝒮 → 𝒜

maps states to actions, or stochastic, in which case 𝜋 : 𝒮 ×𝒜 → R gives a probability

density or mass function over the set of possible actions for each state, such that∑︀
𝑎∈𝒜 𝜋(𝑠, 𝑎) = 1,∀𝑠 ∈ 𝒮. With a slight abuse of notation, we will sometimes write

1See equation 3.8 from Sutton & Barto (2017)
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𝜋(𝑎|𝑠) in place of 𝜋(𝑠, 𝑎) to convey the fact that it describes a conditional probability

distribution over actions.

An extension of this framework is to consider a partially observable MDP (POMDP),

in which we distinguish between the true state 𝑆𝑡 and the observation 𝑂𝑡 at each time

step, with the assumption that the true state 𝑆𝑡 is unobserved. In this case, the

generative model is augmented with the CPD P(𝑂𝑡|𝑆𝑡). In the case of a POMDP,

the policy may depend on the entire history up to time point 𝑡, which is denoted as

𝐻𝑡 := {𝑂1, 𝐴1, 𝑅1, . . . , 𝑂𝑡−1, 𝐴𝑡−1, 𝑅𝑡−1, 𝑂𝑡}, such that the policy is given by 𝜋(𝑎|ℎ),

with ℎ ∈ ℋ informing the action taken.

A trajectory or episode, denoted 𝜏 , is the full sequence of states, actions, and

rewards, up to the terminal state or horizon. For a MDP, given a probability dis-

tribution over initial states P(𝑆1) and policy 𝜋(𝑎|𝑠), the probability of any given

trajectory 𝜏 = {𝑆1, 𝐴1, 𝑅1, . . . , 𝑆𝑇 , 𝐴𝑇 , 𝑅𝑇} is given by

𝑝(𝜏) = P(𝑆1)
𝑇∏︁

𝑘=2

𝜋(𝐴𝑘−1|𝑆𝑘−1)P(𝑆𝑘, 𝑅𝑘|𝐴𝑘−1, 𝑆𝑘−1) (2.3)

With an analogous factorization in the case of a POMDP. Because this distribution

depends on the policy 𝜋, we denote this distribution over 𝜏 by 𝑝𝜋(𝜏), and for any

quantity which is a function of the trajectory (e.g., the total reward 𝐺), we will write

E𝜋(·) to denote the expected value over trajectories drawn from 𝑝𝜋(𝜏).

2.2.2 Policy Iteration Algorithm

There are a variety of techniques used to find an optimal policy in the case of a

finite MDP, but for our purposes it will be sufficient to discuss the techniques used in

(Komorowski et al., 2018), which use straightforward iterative optimization techniques

that depend on knowledge of the MDP, which can be estimated from data.

First, we need to introduce the concept of the value function for each state, which
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is defined with respect to a policy 𝜋 by2

𝑣𝜋(𝑠) = E𝜋[𝐺𝑡|𝑆𝑡 = 𝑠] (2.4)

=
∑︁
𝑎

𝜋(𝑎|𝑠)
∑︁
𝑠′,𝑟

𝑝(𝑠′, 𝑟|𝑠, 𝑎) [𝑟 + 𝛾𝑣𝜋(𝑠′)] (2.5)

With this in hand, the policy evaluation problem is to estimate the value function

for a given policy. Equation (2.5) defines a fixed point, and the following iterative

update rule is known to converge to true value function

𝑣(𝑘+1)
𝜋 (𝑠)←

∑︁
𝑎

𝜋(𝑎|𝑠)
∑︁
𝑠′,𝑟

𝑝(𝑠′, 𝑟|𝑠, 𝑎)
[︀
𝑟 + 𝛾𝑣(𝑘)𝜋 (𝑠′)

]︀
, (2.6)

where 𝑣(𝑘) is the value function at the 𝑘-th iteration. Initializing a random value

function and applying these updates until some desired tolerance is known as the

iterative policy evaluation algorithm.

Using this technique for evaluating a policy as a subroutine, the policy iteration

algorithm improves the policy at each step, using the update rule given by

𝜋′(𝑎|𝑠)← max
𝑎

∑︁
𝑠′,𝑟

𝑝(𝑠′, 𝑟|𝑠, 𝑎) [𝑟 + 𝛾𝑣𝜋(𝑠′)] (2.7)

To summarize, policy improvement starts with a random (deterministic) policy and

a randomly initialized value function, then alternates between policy evaluation and

policy improvement, until it finds a stable policy. For more detail, we refer the reader

to Chapters 4.1–4.3 of Sutton & Barto (2017).

2.2.3 Off-Policy Evaluation (OPE)

In the RL literature, it is commonly assumed that we are able to learn from experi-

ence. That is, we can experiment with different policies until we find a policy that

maximizes our expected reward. From the perspective of healthcare applications,

this is analogous to assuming that we can freely run our own randomized experiments

2See Equation 4.4 from Sutton & Barto (2017)
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as we go along. Evaluation in this setting (the on-policy setting) is conceptually

straightforward, similar to a randomized trial.

In this thesis, we deal with the setting where this type of experimentation is

not possible, e.g., for ethical and practical reasons, and we are restricted to using

observational data. This type of setting is referred to in the RL literature as off-

policy batch RL, to reflect that the policy used to generate the data (the ‘behavior’

policy) is different from the policy we wish to evaluate (the ‘target’ or ‘evaluation’

policy) and the fact that our dataset is restricted to a fixed batch of data.

Here we discuss two methods for off-policy evaluation, which have connections to

the classes of evaluation methods discussed in Section 2.1:

• Model-based off-policy evaluation (MB-OPE) involves learning a parametric

model of an underlying MDP, and then using this to estimate the value of a

policy (see e.g., Chow et al. (2015); Hanna et al. (2017)), and can thus be seen

as a specific instance of simulation via the g-formula.

• Importance sampling (IS) (Rubinstein, 1981) is the foundation for a series

of techniques, such as weighted importance sampling (see e.g., Precup et al.

(2000)). As discussed below, these are similar to IP weighting methods.

• There exist several methods for combining these approaches, whether to gen-

erate doubly robust estimates of performance (Jiang & Li, 2016; Bibaut et al.,

2019; Farajtabar et al., 2018), or using a mixture of IS and MB estimates

(Thomas & Brunskill, 2016; Gottesman et al., 2019a).

We take a moment here to describe the form of a basic IS estimator, as well as

weighted importance sampling (WIS), as they will be relevant for our later experi-

mental work replicating Komorowski et al. (2018). In general, importance sampling

and related approaches (IP weighting, inverse propensity weighting) take advantage

of the following relationship, where 𝑝, 𝑞 are two different distributions

E𝑝[𝑌 ] =

∫︁
𝑦 · 𝑝(𝑦)𝑑𝑦 =

∫︁
𝑦 · 𝑝(𝑦)

𝑞(𝑦)
𝑞(𝑦) = E𝑞

[︂
𝑝(𝑦)

𝑞(𝑦)
𝑌

]︂
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This is the same basic theory that underlies all the IP weighting methods discussed

so far.3 Thus, given samples of a random variable from a distribution 𝑞, we can

approximate the expectation under the distribution 𝑝 using the weights 𝑝(𝑦𝑖)/𝑞(𝑦𝑖)

for each 𝑦𝑖, and taking a sample average E𝑝[𝑌 ] ≈ 𝑛−1
∑︀

𝑦𝑖 · 𝑝(𝑦𝑖)/𝑞(𝑦𝑖)

In an RL context, we want to estimate the expected reward of an evaluation

policy 𝜋𝑒, given data sampled from an MDP under a behavior policy 𝜋𝑏. In this

case the importance ratio is straightforward. Examining the probability of any given

trajectory, given in Equation 2.3, we note that all the terms cancel in the importance

sampling ratio, except for those which involve the policy. Thus, the importance

sampling ratio is given by the following, where we use 𝜌1:𝑇 to denote the importance

sampling ratio over 𝑇 time steps

𝜌1:𝑇 =
𝑇∏︁
𝑖=1

𝜋𝑒(𝑎𝑡|𝑠𝑡)
𝜋𝑏(𝑎𝑡|𝑠𝑡)

Using importance sampling, we can get an unbiased and consistent estimator of

the reward under the evaluation policy using E𝜋𝑒 [𝐺] ≈ 𝑛−1
∑︀

𝑖 𝜌
(𝑖)𝐺(𝑖), where we drop

the subscript on 𝜌, use the superscript to indicate observed trajectories, and write

𝐺 as the total discounted reward. However, in practice the IS estimator can exhibit

high variance, especially if some actions are rare under the behavior policy (such that

1/𝜋𝑏(𝑎𝑡|𝑠𝑡) is very large).

Weighted importance sampling is an alternative estimator which exhibits much

lower variance, albeit at the cost of introducing some bias.4 The weighted importance

sampling estimator performs a weighted average instead of a simple average, and is

given by ∑︀
𝑖 𝜌

(𝑖) ·𝐺(𝑖)∑︀
𝑖 𝜌

(𝑖)
,

It is important to note that all variants of importance sampling are subject to the

3Note that this relationship is only well-defined if 𝑝(𝑦) > 0 =⇒ 𝑞(𝑦) > 0. This condition goes by
various names depending on the field: In probability theory, it is referred to as absolute continuity.
In the context of inverse propensity weighting, it is referred to as overlap or positivity. In the context
of reinforcement learning, it is referred to as coverage.

4Weighted importance sampling is still consistent, in the sense that it converges to the correct
value in the infinite data limit, with the bias asymptotically approaching zero.
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same assumptions as any other causal analysis. That is, we typically need to estimate

the behavior policy from data, and if there is some unmeasured confounding factor

which cause our estimates of the behavior policy 𝜋𝑏 to be incorrect, then our IS or

WIS estimates will also be incorrect. This well-known fact is demonstrated in our

synthetic experiments in Section 6.2.2.

2.3 Structural Causal Models and Counterfactuals

When we discussed binary treatments in Section 2.1.3 we discussed potential outcomes

𝑌1, 𝑌0. In that setting, we observe one of these, but the other is unknown, representing

the theoretical counterfactual outcome. In many applications of causal inference, we

wish to estimate some general effect of an intervention, such as the conditional average

treatment effect E[𝑌1 − 𝑌0|𝑋] (e.g., Schulam & Saria, 2017; Johansson et al., 2016),

because this represent general knowledge about interventions that we can apply to

future patients. But we do not particularly care about e.g., estimating 𝑌0 given 𝑌1

for a particular patient that we have already treated, because we cannot go back in

time and take a different action.

In a sense that we will make precise in Section 2.3.2, the CATE is a property

of the interventional distribution of 𝑌 , describing how 𝑌 changes in response to

interventions on other variables (in this case, 𝑇 ). However, we would like to go a step

beyond this, as described in Section 1.3. We would like to take into account what

actually happened to get a more precise estimate of what would have happened had a

different action (or set of actions) been taken. This is a counterfactual question. In

essence, we want to estimate something that is conceptually akin to the individual

treatment effect 𝑌1 − 𝑌0, rather than just the CATE.

To do so, we need to introduce the mathematical formalism of structural causal

models, which give a well-defined answer to these questions. In Section 2.3.1 we intro-

duce the general framework, in Section 2.3.2 we formalize the conceptual distinction

between interventional and counterfactual distributions, and in Sections 2.3.3-2.3.4 we

discuss the fundamental challenge of non-identifiability, as well as some assumptions
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that make identification possible in the binary case.

2.3.1 Structural Causal Models (SCMs)

As promised, we review the concept of structural causal models, and encourage the

reader to refer to Pearl (2009) (Section 7.1) and Peters et al. (2017) for more details.

A word regarding notation: As a general rule throughout, we refer to a random

variable with a capital letter (e.g., 𝑋), the value it obtains as a lowercase letter (e.g.,

𝑋 = 𝑥), and a set of random variables with boldface font (e.g., X = {𝑋1, . . . , 𝑋𝑛}).

Consistent with Peters et al. (2017) and Buesing et al. (2019), we write 𝑃𝑋 for the

distribution of a variable 𝑋, and 𝑝𝑥 for the density function.

Definition 1 (Structural Causal Model (SCM)). A structural causal modelℳ consists

of a set of independent random variables U = {𝑈1, . . . , 𝑈𝑛} with distribution 𝑃 (U),

a set of functions F = {𝑓1, . . . , 𝑓𝑛}, and a set of variables X = {𝑋1, . . . , 𝑋𝑛} such

that 𝑋𝑖 = 𝑓𝑖(PA𝑖, 𝑈𝑖),∀𝑖, where PA𝑖 ⊆ X ∖𝑋𝑖 is the subset of X which are parents

of 𝑋𝑖 in the causal DAG 𝒢. As a result, the prior distribution 𝑃 (U) and functions F

determine the distribution 𝑃ℳ
𝑋 .

As a motivating example to simplify exposition, we will assume the causal graphs

(and corresponding SCM) given in Figure 2-2. An astute reader will recognize this as

the same binary setting discussed previously, representing (for example) the effect of

a medical treatment 𝑇 on an outcome 𝑌 in the presence of confounding variables X.

2.3.2 Interventional vs. Counterfactual Distributions

The SCMℳ defines a complete data-generating processes, which entails the observa-

tional distribution 𝑃 (X, 𝑌, 𝑇 ). It also defines an interventional distribution, describing

the effect of any possible intervention.

Definition 2 (Interventional Distribution). Given an SCM ℳ, an intervention 𝐼 =

𝑑𝑜
(︁
𝑋𝑖 := 𝑓(P̃A𝑖, �̃�𝑖)

)︁
corresponds to replacing the structural mechanism 𝑓𝑖(PA𝑖, 𝑈𝑖)

with 𝑓𝑖(P̃A𝑖, 𝑈𝑖). This includes the concept of atomic interventions, where we may
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𝑌𝑇

X

𝑌𝑇

X

𝑈𝑡

𝑈𝑥
𝑈𝑦

Figure 2-2: Example translation of a causal graph into the corresponding Structural
Causal Model. Left: Causal DAG on an outcome 𝑌 , covariates 𝑋, and treatment
𝑇 . Given this graph, we can perform do-calculus (Pearl, 2009) to estimate the im-
pact of interventions such as E[𝑌 |𝑋, 𝑑𝑜(𝑇 = 1)] − E[𝑌 |𝑋, 𝑑𝑜(𝑇 = 0)], known as the
Conditional Average Treatment Effect (CATE). Right: All observed random variable
are assumed to be generated via structural mechanisms 𝑓𝑥, 𝑓𝑡, 𝑓𝑦 via independent la-
tent factors 𝑈 which cannot be impacted via interventions. Following convention of
Buesing et al. (2019), calculated values are given by black boxes (and in this case, are
observed), observed variables are given in grey, and unobserved variables are given in
white.

write more simply 𝑑𝑜(𝑋𝑖 = 𝑥). The resulting SCM is denoted ℳ𝐼 , and the resulting

distribution is denoted 𝑃ℳ;𝐼 .

For instance, suppose that 𝑌 corresponds to a favorable binary outcome, such

as 5-year survival, and 𝑇 corresponds to a treatment. Then several quantities of

interest in causal effect estimation, including (but not limited to) the ATE and the

CATE, are defined by the interventional distribution, which is forward-looking, telling

us what might be expected to occur if we applied an intervention. However, we can

also define the counterfactual distribution which is retrospective, telling us what might

have happened had we acted differently. For instance, we might ask: Having given

the drug and observed that 𝑌 = 1 (survival), what would have happened if we had

instead withheld the drug? This is formalized in an SCM as follows:

Definition 3 (Counterfactual Distribution). Given an SCM ℳ and an observed as-

signment X = x over any set of observed variables, the counterfactual distribution

𝑃
ℳ|X=x;𝐼
𝑋 corresponds to the distribution entailed by the SCMℳ𝐼 using the posterior

distribution 𝑃 (U|X = x).

Explicitly, given an SCMℳ, the counterfactual distribution can be estimated by

first inferring the posterior over latent variables, e.g., 𝑃 (U|X = x, 𝑇 = 1, 𝑌 = 1)

in our running example, and then passing that distribution through the structural
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mechanisms in a modified ℳ𝐼 (e.g., 𝐼 = 𝑑𝑜(𝑇 = 0)) to obtain a counterfactual

distribution over any variable5. In this way, we make precise the meaning of several

terms we will use in this thesis. When we say counterfactual inference, we are referring

to this process of obtaining a counterfactual distribution. Similarly, we sometimes use

the term counterfactual posterior to refer to the counterfactual distribution, to reflect

the fact that it is simply posterior inference in a particular type of causal model.

2.3.3 Non-Identifiability of Binary SCMs

So, given an SCM ℳ, we can compute an answer to our counterfactual question:

Having given the drug and observed that 𝑌 = 1 (survival), what would have happened

if we had instead withheld the drug? In the binary case, this corresponds to the

Probability of Necessity (PN) (Pearl, 2009; Dawid et al., 2015), because it represents

the probability that the exposure 𝑇 = 1 was necessary for the outcome.

Intuitively, this is impossible to answer with certainty, even though we may ask

ourselves these types of questions frequently in the real world. For instance, in medical

malpractice, establishing fault requires just such a counterfactual claim, showing that

an injury would not have occurred “but for” the breach in the standard of care (Bal,

2009; Encyclopedia, 2008).

Mathematics matches our intuition in this case: The answer to the question is not

identifiable without further assumptions, a general property of counterfactual infer-

ence. That is, there are multiple SCMs which are all consistent with the interventional

distribution, but which produce different counterfactual estimates of quantities like

the Probability of Necessity (Pearl, 2009).

2.3.4 Monotonicity Assumption for Identification of Binary SCMs

Nonetheless, there are plausible (though untestable) assumptions we can make that

identify counterfactual distributions. Consider our intuition in the following case:

Suppose that a non-smoker develops lung cancer. What would have happened if they

5This process is called abduction, action, and prediction in Pearl (2009)
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had (counterfactually) smoked a pack a day? Our intuition is that, at the very least,

it would not have helped, and they would have developed the cancer regardless, all else

being equal. This type of intuition is formalized mathematically as the monotonicity

assumption (Pearl, 2000; Tian & Pearl, 2000), and is in fact sufficient to identify the

Probability of Necessity and related quantities in epidemiology (Cuellar & Kennedy,

2018; Yamada & Kuroki, 2017).

Definition 4 (Monotonicity). A SCM of a binary variable 𝑌 is monotonic relative to

a binary variable 𝑇 if and only if it has the following property6,7: E[𝑌 |𝑑𝑜(𝑇 = 𝑡)] ≥

E[𝑌 |𝑑𝑜(𝑇 = 𝑡′)] =⇒ 𝑓𝑦(𝑡, 𝑢) ≥ 𝑓𝑦(𝑡
′, 𝑢), ∀𝑢. We can write equivalently that the

following event never occurs, in the case where E[𝑌 |𝑑𝑜(𝑇 = 1)] ≥ E[𝑌 |𝑑𝑜(𝑇 = 0)]:

𝑌𝑑𝑜(𝑇=1) = 0 ∧ 𝑌𝑑𝑜(𝑇=0) = 1. Conversely for E[𝑌 |𝑑𝑜(𝑇 = 1)] ≤ E[𝑌 |𝑑𝑜(𝑇 = 0)], the

following event never occurs: 𝑌𝑑𝑜(𝑇=1) = 1 ∧ 𝑌𝑑𝑜(𝑇=0) = 0.

In particular, this assumption restricts the class of possible SCMs to those which

all yield equivalent counterfactual distributions over 𝑌 . For instance, the following

SCM exhibits the monotonicity property, and replicates any interventional distribu-

tion where 𝑔(𝑥, 𝑡) = E[𝑌 |𝑋 = 𝑥, 𝑑𝑜(𝑇 = 𝑡)]:

𝑌 = 1 [𝑈𝑦 ≤ 𝑔(𝑥, 𝑡)] , 𝑈 ∼ Unif(0, 1)

In Figure 2-3 we demonstrate how this plays out for a binary treatment and outcome.

There is a wide range of literature in statistics, epidemiology, and machine learning

which makes use of this assumption: In epidemiology, it implicitly appears in early

work on estimating quantities like the ‘relative risk ratio’ (Miettinen, 1974), which are

often imbued with causal interpretations (Pearl, 2009; Yamada & Kuroki, 2017). For-

malizing the assumption of monotonicity, required to correctly impute causal meaning

6We could also write this property as conditional on 𝑋
7This definition differs slightly from the presentation of monotonicity in Pearl (2009), where

𝑓𝑦(𝑡, 𝑢) being monotonically increasing in 𝑡 is given as the property, with the testable implication
that E[𝑌 |𝑑𝑜(𝑇 = 𝑡)] ≥ E[𝑌 |𝑑𝑜(𝑇 = 𝑡′)] for 𝑡 ≥ 𝑡′. Because the direction of monotonicity is only com-
patible with the corresponding direction of the expected interventional outcomes, we fold this into
the definition of monotonicity directly, to align with our later definition of counterfactual stability.
Also note that we use the notation 𝑌𝑑𝑜(𝑇=𝑡) := 𝑓𝑦(𝑡, 𝑢) here
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This SCM has the monotonicity property 
(Pearl 20003), which identifies 
counterfactuals in the binary case

𝑋 𝑌

𝑇𝑈𝑡 𝑈𝑦

𝑈𝑥𝑋

𝑇

𝑌

𝑈𝑦 ∼ 𝑈𝑛𝑖𝑓 0, 1 ,

𝑌𝑡 = 1 𝑈𝑦 ≤ 𝑝𝑡
where 𝑝𝑡 ≔ 𝐸 𝑌 𝑑𝑜 𝑇 = 𝑡 , 𝑋 ]

Example: Monotonicity assumption for binary outcomes

2 Intervene to set 𝑇 = 𝑏

𝑃(𝑈𝑦)

10

𝑌 = 1 𝑌 = 0

𝑝𝑎

Infer the posterior of 𝑈𝑦
given 𝑋, 𝑌𝑎 = 1

1

Predict counterfactual outcome3

𝑃(𝑈𝑦)

10
𝑝𝑏

Treatment A was given, and we observed 
𝑌𝑎 = 1.  What would have happened if 
Treatment B had been given?

𝑃(𝑈𝑦 ≤ 𝑝𝑏 ∣ 𝑈𝑦 ≤ 𝑝𝑎) = 1

implies 𝑌𝑏 = 1

Figure 2-3: Example of a structural causal model which satisfies the monotonicity
assumption, and the process of performing counterfactual inference.

to these quantities, is covered in Balke & Pearl (1994); Pearl (2000); Tian & Pearl

(2000). More recent work in epidemiology uses the assumption of monotonicity explic-

itly, (e.g., to estimate the counterfactual effect of water sanitation in Kenya in Cuellar

& Kennedy, 2018), and there has been ample discussion and debate regarding how

this reasoning could apply (in principle) to legal cases, such as litigation around the

toxic effects of drugs (Dawid et al., 2016). In statistics, monotonicity of treatment

with respect to an instrumental is a core assumption of instrumental variable anal-

ysis (Imbens & Angrist, 1994). Finally, the monotonicity assumption has been used

recently in the machine learning community by Kallus (2019) to classify treatment

non-responders.
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Chapter 3

Counterfactual Decomposition of

Reward

3.1 Viewing MDPs and POMDPs as SCMs

In this section we will describe how to reformulate MDPs and POMDPs as structural

causal models, retaining their implied interventional distributions while enabling the

counterfactual inference procedure described previously. Critically, our results are

not limited to MDPs and POMDPs, as any graphical model can be reformulated as

a structural causal model. Thus, our results apply more generally wherever e.g., the

parametric g-formula is used, but we focus primarily on MDPs and POMDPs in this

thesis. Note that we will abuse language slightly throughout this thesis, referring

to both (a) a structural causal model over all observed variables, as well as (b) the

individual mechanisms for each variable (e.g., 𝑆𝑡+1 = 𝑓𝑠(𝑠𝑡, 𝑎𝑡, 𝑢𝑠𝑡+1)) as structural

causal models.

For a MDP, we can write the states, actions, and rewards as deterministic functions

of their parents in the MDP (e.g., for any individual state, these are the previous state

and action), as well as an independent exogenous variable. This is shown visually in

Figure 3-1. If we are given a deterministic policy to evaluate, then the only SCMs

and exogenous variables that we need to consider modelling (for the counterfactual)

are those which impact the state transitions (as well as the rewards, if they are not
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a deterministic function of state). For continuous state-space models, we will need a

continuous SCM, as discussed in Chapter 5, and for discrete state-space models (e.g.,

a finite MDP), we will need a categorical SCM, as discussed in Chapter 4.

𝑈𝑠1

𝑆1

𝐴1

𝑈𝑎1

𝑆2

𝑈𝑠2

𝐴2

𝑈𝑎2

𝑆3

𝑈𝑠3

Figure 3-1: SCM for a MDP, with states 𝑆𝑡 and actions 𝐴𝑡, where the action is
generated via the mechanism 𝜋(𝑈𝑎, 𝑆𝑡), or 𝜋(𝑆𝑡) if the policy is deterministic. Rewards
are not shown for simplicity. Black squares are functions of their parents in the graph,
and are observed, while white circles are unobserved random variables.

Similarly, as noted in Buesing et al. (2019), we can view an episodic Partially

Observable Markov Decision Process (POMDP) as an SCM, as shown in Figure 3-

2, where 𝑆𝑡 corresponds to states, 𝐴𝑡 corresponds to actions, 𝑂𝑡 corresponds to

observable quantities (including reward 𝑅𝑡), 𝐻𝑡 contains history up to time 𝑡, i.e.,

𝐻𝑡 = {𝑂1, 𝐴1, . . . 𝐴𝑡−1, 𝑂𝑡}, and stochastic policies are given by 𝜋(𝑎𝑡|ℎ𝑡).

Thus, the only remaining task required to convert a MDP or POMDP into an SCM

is to define the individual mechanisms in such a way that the conditional probability

distributions are preserved. This will be discussed in more detail in Chapters 4-5.

For now, we will define some additional notation1 that will prove useful later, and

then discuss in Section 3.2 why this reformulation as an SCM is useful for understand-

ing the model-based estimates of reward that a MDP or POMDP might produce. In

the context of reinforcement learning with POMDPs, we are typically concerned with

1We also re-define some notation we used previously, for which we apologize profusely to the
reader. From now on 𝜏 is a trajectory, not the ATE.
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𝑈𝑜1

𝑈𝑠1

𝑂1 𝑈𝑎1

𝐻1

𝐴1 𝑈𝑜2

𝑆2

𝑈𝑠2

𝑂2 𝑈𝑎2

𝐻2

𝐴2

𝑆3

𝑈𝑠3

Figure 3-2: SCM for a POMDP, slightly modified from a similar figure in Buesing
et al. (2019), with initial state 𝑈𝑠1 = 𝑆1, states 𝑆𝑡, and histories 𝐻𝑡, where the action
is generated via the mechanism 𝜋(𝑈𝑎, 𝐻𝑡), or 𝜋(𝐻𝑡) if the policy is deterministic.
Rewards are captured as part of observed variables 𝑂 for simplicity. Black and grey
squares are functions of their parents in the graph, with black squares being observed
and grey squares being unobserved. White circles still represent unobserved variables.

estimating the expected reward of a proposed policy �̂�. To formalize notation, a given

policy 𝜋 implies a density over trajectories 𝜏 ∈ 𝒯 = (𝑆1, 𝑂1, 𝐴1, . . . , 𝐴𝑇−1, 𝑆𝑇 , 𝑂𝑇 ),

which we denote as 𝑝𝜋(𝜏), and we let 𝑅(𝜏) be the total reward of a trajectory 𝜏 . For

ease of notation, we sometimes write E�̂� and E𝑜𝑏𝑠 to indicate an expectation taken

with respect to 𝜏 ∼ 𝑝�̂� and 𝜏 ∼ 𝑝𝜋𝑜𝑏𝑠 respectively, where �̂� refers to the proposed

(‘target’ or ‘evaluation’) policy, and 𝜋𝑜𝑏𝑠 to the observed (‘behavior’) policy.

3.2 Counterfactual Decomposition of Reward

3.2.1 Model-Based OPE as CATE Estimation

If we wish to compare the performance of a proposed policy �̂� and the observed policy

𝜋𝑜𝑏𝑠, we might compare the difference in expected reward. The expected reward under

𝜋𝑜𝑏𝑠 can be estimated in this case using observed trajectories, without a model of the

environment. The difference in expected reward is conceptually similar to the average
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treatment effect (ATE) of applying the proposed vs observed policy, and we denote

it as 𝛿:

𝛿 := E�̂�[𝑅(𝜏)]− E𝑜𝑏𝑠[𝑅(𝜏)] (3.1)

However, it may be useful to drill down into specific cases: Perhaps there are

certain environments, for instance, in which the proposed policy would perform better

or worse than the observed policy. One natural decomposition is to condition on the

first observed state to estimate a conditional expected reward, e.g.,

𝛿𝑜 := E�̂�[𝑅(𝜏)|𝑂1 = 𝑜]− E𝑜𝑏𝑠[𝑅(𝜏)|𝑂1 = 𝑜] (3.2)

Equation 3.2 corresponds conceptually to CATE estimation, where we condition only

on pre-treatment information (in this case, 𝑂1, which occurs before the first action).

However, we can go no further than that without a structural causal model, as we

need a way to ‘condition’ on the entire observed trajectory.

3.2.2 Counterfactual OPE as ITE Estimation

Given a structural causal model, we can use information from the entire trajectory

to decompose Equation (3.2) further, over actual trajectories that we have observed,

to highlight differences between the observed and proposed policy. With an SCM in

hand, we can decompose Equation 3.2 further as follows:

Lemma 1 (Counterfactual Decomposition of Expected Reward). Let trajectories 𝜏 be

drawn from 𝑝𝜋𝑜𝑏𝑠. Let 𝜏�̂� be a counterfactual trajectory, drawn from our posterior

distribution over the exogenous 𝑈 variables under the new policy �̂�. Note that under

the SCM, 𝜏�̂� is a deterministic function of the exogenous 𝑈 variables, so we can write

𝜏�̂�(𝑢) to be explicit:

E�̂�[𝑅(𝜏)|𝑂1 = 𝑜1]

=

∫︁
𝜏

𝑝𝜋𝑜𝑏𝑠(𝜏 |𝑂1 = 𝑜1)E𝑢∼𝑝𝜋𝑜𝑏𝑠 (𝑢|𝜏)[𝑅(𝜏�̂�(𝑢))]𝑑𝜏
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Proof. This proof is similar to the proof of Lemma 1 from (Buesing et al., 2019), but

is spelled out here for the sake of clarity. Recall that the distribution of noise variables

𝑈 is the same for every intervention / policy. Thus, 𝑝𝜋𝑜𝑏𝑠(𝑢) = 𝑝�̂�(𝑢) = 𝑝(𝑢). We will

write 𝑝′ and 𝑝 for 𝑝𝜋𝑜𝑏𝑠 and 𝑝�̂� respectively to simplify notation.

Furthermore, recall that all variables are a deterministic function of their parents

in the causal DAG implied by the SCM. Most importantly, this means that the

trajectory 𝜏 is a deterministic function of the policy 𝜋 and the exogenous variables

𝑈 . With that in mind, let 𝜏�̂�(𝑢) indicate the trajectory 𝜏 as a deterministic function

of �̂� and 𝑢. We will occasionally use indicator functions to indicate whether or not a

deterministic value is compatible with the variables that determine it, e.g., 1 [𝜏 |𝑢, 𝜋]

is equivalent to the indicator for 1 [𝜏 = 𝜏𝜋(𝑢)]. Note that the first observation is

independent of the policy, and is just a function of the exogenous 𝑈 , so we will write

1 [𝑜1|𝑢] in that case. For simplicity, we will remove the conditioning on 𝑂1 to start

with:

E𝑝[𝑅(𝜏)]

=

∫︁
𝑅(𝜏�̂�(𝑢)) · 𝑝(𝑢)𝑑𝑢 (3.3)

=

∫︁
𝑅(𝜏�̂�(𝑢)) · 𝑝′(𝑢)𝑑𝑢 (3.4)

=

∫︁
𝑅(𝜏�̂�(𝑢)) ·

(︂∫︁
𝑝′(𝜏, 𝑢)𝑑𝜏

)︂
𝑑𝑢 (3.5)

=

∫︁ ∫︁
𝑅(𝜏�̂�(𝑢)) · 𝑝′(𝑢|𝜏) · 𝑝′(𝜏)𝑑𝑢𝑑𝜏 (3.6)

= E𝜏∼𝑝′

[︂∫︁
𝑅(𝜏�̂�(𝑢)) · 𝑝′(𝑢|𝜏)𝑑𝑢

]︂
(3.7)

= E𝜏∼𝑝′E𝑢∼𝑝′(𝑢|𝜏) [𝑅(𝜏�̂�(𝑢))] (3.8)

=

∫︁
𝜏

𝑝𝜋𝑜𝑏𝑠(𝜏)E𝑢∼𝑝′(𝑢|𝜏) [𝑅(𝜏�̂�(𝑢))] 𝑑𝜏 (3.9)

In step (3.3) we are just using the definition of the expectation under 𝑝, along with

the notation 𝜏�̂�(𝑢) to indicate that the trajectory is a deterministic function of the
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exogenous 𝑢 and the policy �̂�. In step (3.4) we replace 𝑝(𝑢) with 𝑝′(𝑢) because they

are equivalent, as noted earlier. In step (3.5) we expand 𝑝′(𝑢) over possible trajectories

𝜏 arising from the observed policy. In step (3.6) we rearrange terms and swap the

order of the integral, and in step (3.7) we rewrite the outer integral as an expectation.

In step (3.8) we further condense notation, and then expand in step (3.9) to match

the notation in the Lemma. If we introduce the conditioning on 𝑂1, we see that it is

substantively the same.

E𝑝[𝑅(𝜏)|𝑜1]

=

∫︁
𝑅(𝜏�̂�(𝑢)) · 1 [𝑜1|𝑢] · 𝑝(𝑢)𝑑𝑢 (3.10)

=

∫︁
𝑅(𝜏�̂�(𝑢)) · 1 [𝑜1|𝑢] · 𝑝′(𝑢)𝑑𝑢 (3.11)

=

∫︁
𝑅(𝜏�̂�(𝑢)) · 𝑝′(𝑢|𝑜1)𝑑𝑢 (3.12)

=

∫︁
𝑅(𝜏�̂�(𝑢)) ·

(︂∫︁
𝑝′(𝜏, 𝑢|𝑜1)𝑑𝜏

)︂
𝑑𝑢 (3.13)

=

∫︁ ∫︁
𝑅(𝜏�̂�(𝑢)) · 𝑝′(𝑢|𝜏) · 𝑝′(𝜏 |𝑜1)𝑑𝑢𝑑𝜏 (3.14)

=

∫︁
𝑝′(𝜏 |𝑜1)

[︂∫︁
𝑅(𝜏�̂�(𝑢)) · 𝑝′(𝑢|𝜏)𝑑𝑢

]︂
𝑑𝜏 (3.15)

=

∫︁
𝜏

𝑝′(𝜏 |𝑜1)E𝑢∼𝑝′(𝑢|𝜏)[𝑅(𝜏�̂�(𝑢))]𝑑𝜏 (3.16)

The main difference in this case is that is just that we carry the indicator into the

prior on 𝑈 at step (3.12), which we can do because 𝑂1 does not depend on the policy

that is applied. Note that Equation (3.16) matches the statement of the Lemma.

Corollary 1 (Counterfactual Decomposition of 𝛿𝑜).

𝛿𝑜 := E�̂�[𝑅(𝜏)|𝑂1 = 𝑜1]− E𝑜𝑏𝑠[𝑅(𝜏)|𝑂1 = 𝑜1]

=

∫︁
𝜏

𝑝𝜋𝑜𝑏𝑠(𝜏 |𝑂1 = 𝑜1)E𝑢∼𝑝𝜋𝑜𝑏𝑠 (𝑢|𝜏)[𝑅(𝜏�̂�(𝑢))−𝑅(𝜏)]𝑑𝜏
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Proof. By Lemma 1, we have it that

𝛿𝑜 := E�̂�[𝑅(𝜏)|𝑂1 = 𝑜]− E𝑜𝑏𝑠[𝑅(𝜏)|𝑂1 = 𝑜]

=

∫︁
𝜏

𝑝′(𝜏 |𝑜1)E𝑢∼𝑝′(𝑢|𝜏)[𝑅(𝜏�̂�(𝑢))]𝑑𝜏

−
∫︁
𝜏

𝑝′(𝜏 |𝑜1)E𝑢∼𝑝′(𝑢|𝜏)[𝑅(𝜏𝜋𝑜𝑏𝑠
(𝑢))]𝑑𝜏

=

∫︁
𝜏

𝑝𝜋𝑜𝑏𝑠(𝜏 |𝑂1 = 𝑜1)E𝑢∼𝑝𝜋𝑜𝑏𝑠 (𝑢|𝜏)[𝑅(𝜏�̂�(𝑢))−𝑅(𝜏)]𝑑𝜏

Note that in the last step, we recognize that P𝑢∼𝑝′(𝑢|𝜏)[𝜏𝜋𝑜𝑏𝑠
(𝑢) = 𝜏 ] = 1, because the

posterior density over 𝑢 is zero for all 𝑢 such that 𝜏𝜋𝑜𝑏𝑠
(𝑢) ̸= 𝜏 .

Corollary 1 implies that we can decompose the expected difference in reward

between the policies into differences on observed episodes over counterfactual trajec-

tories, if the SCM is correct. In the context of Buesing et al. (2019), this fact is used

to argue that counterfactuals approximate draws from the interventional distribution,

since efficient estimation of the latter is their ultimate goal.

In our case this fact serves an additional purpose: It theoretically motivates the

use of counterfactuals as a model-checking tool. In principle, if the SCM is correct,

then the counterfactuals can be used to identify how observed episodes contribute to

overall estimates of reward, and thus ground the model-based conclusions in specific

counterfactual claims that can be vetted by domain experts. In practice, we consider

this decomposition a heuristic, as we do not believe the SCM is necessarily correct.

That said, our empirical work in Chapters 6-7 gives anecdotal evidence that this

equality holds approximately in some situations when the learned MDP is not correct.

47



48



Chapter 4

Gumbel-Max SCMs for Categorical

Variables

In the previous chapter, we illustrated how to convert a model of the environment

into a structural causal model, as well as the potential benefits of doing so for the

purpose of decomposing model-based rewards into counterfactual claims. All that

remained was to specify the specific causal mechanisms for each of the variables in

the respective SCMs.

However, it is at this point that we face a non-identifiability issue: Multiple SCMs

can all entail the same interventional distribution, but a different set of counterfactual

trajectories, and therefore a different decomposition under Lemma 1. This motivates

the theoretical work of this chapter: We must make our assumptions carefully, as

they cannot be tested by data, so it is worth investigating which assumptions are

consistent with our causal intuition. We illustrate this non-identifiability (with re-

spect to categorical distributions) in Section 4.1. Then we introduce the condition

of counterfactual stability (in Section 4.2) for a discrete distribution on 𝑘 categories,

and show that it is compatible with the monotonicity condition of Pearl (2000) in

that it implies the monotonicity assumption when 𝑘 = 2. Then we introduce the

Gumbel-Max SCM for discrete variables in Section 4.3, and prove that it satisfies the

counterfactual stability condition, and in Section 4.4 describe an intuitive connection

to discrete choice models.
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4.1 Non-Identifiability of Categorical SCMs

We will first illustrate that the non-identifiability of counterfactual distributions ap-

plies to categorical distributions as well. Consider the categorical distribution over

𝑘 categories, e.g., the transition kernel 𝑃 (𝑆 ′|𝑆 = 𝑠, 𝐴 = 𝑎) over discrete states. Let

𝑝𝑖 := 𝑃 (𝑆 ′ = 𝑖|𝑆 = 𝑠, 𝐴 = 𝑎). There are multiple ways that we could sample

from this distribution with a structural mechanism 𝑓 and latent variables 𝑈 . For

instance, we could define an ordering ord on the categories, and define 𝑘 intervals

of [0, 1] as [0, 𝑝ord(1)), [𝑝ord(1),
∑︀2

𝑖=1 𝑝ord(𝑖)), . . . , [
∑︀𝑘−1

𝑖=1 𝑝ord(𝑖), 1]. Then we could draw

𝑈 ∼ 𝑈𝑛𝑖𝑓(0, 1), and return the interval that 𝑢 falls into.

However, different permutations ord will yield equivalent interventional distri-

butions but can imply different counterfactual distributions. For instance, consider

the following example, shown visually in in Figure 4-1. Let 𝑘 = 4 and 𝑝1 = 𝑝2 =

0.25, 𝑝3 = 0.3, 𝑝4 = 0.2 and consider an intervention 𝐴 = 𝑎′ which defines a different

distribution 𝑝′1 = 0, 𝑝′2 = 0.25, 𝑝′3 = 0.25, 𝑝′4 = 0.5. Now consider two permutations,

ord = [1, 2, 3, 4] and ord′ = [1, 2, 4, 3], and the counterfactual distribution under 𝑎′

given that 𝑆 ′ = 2, 𝐴 = 𝑎. In each case, posterior inference over 𝑈 implies that

𝑃 (𝑈 |𝑆 ′ = 2, 𝑆 = 𝑠, 𝐴 = 𝑎) ∼ 𝑈𝑛𝑖𝑓 [0.25, 0.5). However, under ord this implies the

counterfactual 𝑆 ′ = 3, while under ord′ it implies 𝑆 ′ = 4.

Note that in this example, the mechanism 𝑓ord implied a non-intuitive counter-

factual outcome: Even though the intervention 𝐴 = 𝑎′ lowered the probability of

𝑆 ′ = 3 (relative to the probability under 𝐴 = 𝑎) without modifying the probability

of 𝑆 ′ = 2, it led to a delta distribution in the counterfactual posterior on 𝑆 ′ = 3.

Since all choices for ord imply the same interventional distribution, there is no way

to distinguish between these mechanisms with data.

This motivates the following sections, where we posit a desirable property for

categorical SCMs to possess, and which rules out this result (among others) and is

compatible with the notion of monotonicity introduced by Pearl (2000). We then

demonstrate that a mechanism based on sampling independent Gumbel variables sat-

isfies this property, which motivates the use of the Gumbel-Max SCM for performing

50



Counterfactual Question

Let 𝑆′ = 2, 𝑆 = 𝑠, 𝐴 = 𝑎;
What would have happened 
if 𝐴 = 𝑎′ ?

Procedure

2 Intervene to 
set 𝐴 = 𝑎′

3 Predict 
counterfactual

𝑆′ 𝑝(𝑆′ ∣ 𝑠, 𝑎) 𝑝(𝑆′ ∣ 𝑠, 𝑎′)

1 0.25 0

2 0.25 0.25

3 0.3 0.25

4 0.2 0.5

Interventional CPD

Infer the 
posterior of 𝑈

1

𝑃(𝑈)

10

1 2 3 4

10

1 2 34

𝑃(𝑈)

1
2

10

2 3 4

10

2 34

3

𝑺′ = 𝟑

𝑺′ = 𝟒

Different, based 
on the ordering!

Figure 4-1: Example of non-identifiability of categorical counterfactual outcomes. The
table on the bottom right illustrates the difference in the conditional probability dis-
tribution (the ‘interventional’ distribution) as a function of actions 𝑎 versus 𝑎′. The
procedure is illustrated in the middle, where the two rows represent two possible or-
derings (ord and ord’) both of which define a causal mechanism 𝑆 ′ = 𝑓(𝑆,𝐴, 𝑈) with
𝑈 ∼ 𝑈𝑛𝑖𝑓(0, 1) that replicates the interventional probability distribution. From left
to right, we see the application of counterfactual inference: (1) Infer the posterior of
𝑈 , represented by the red box, (2) intervene to set 𝐴 = 𝑎′, and (3) predict the coun-
terfactual by evaluating under the posterior of 𝑈 . These two SCMs produce different
counterfactual outcomes, with the outcome of 𝑆 ′ = 3 being particularly unintuitive,
since the interventional probability was reduced under the shift from 𝑎 to 𝑎′.

counterfactual inference in this setting.
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4.2 Counterfactual Stability Property

We now introduce our first contribution, the desired property of counterfactual stabil-

ity for categorical SCMs with 𝑘 categories, laid out in in Definition 5. This property

would rule out the non-intuitive counterfactual implications of 𝑓ord in Section 4.1.

We then demonstrate that this condition implies the monotonicity condition when

𝑘 = 2.

First, with apologies to the reader, we will once again introduce some notation.

Denote the interventional probability distribution of a categorical variable 𝑌 with

𝑘 categories as 𝑃ℳ;𝐼(𝑌 ) = p under intervention 𝐼, and p′ under intervention 𝐼 ′,

where p,p′ ∈ ∆𝑘, the probability simplex over 𝑘 categories. To simplify notation

for interventional outcomes, we will sometimes denote by 𝑌𝐼 the observed outcome 𝑌

under intervention 𝐼, and denote by 𝑌𝐼′ the counterfactual outcome under intervention

𝐼 ′, such that 𝑝𝑖 and 𝑃 (𝑌𝐼 = 𝑖) are both equivalent to 𝑃ℳ;𝐼(𝑌 = 𝑖), and similarly for

𝐼 ′. For counterfactual outcomes, we will write 𝑃ℳ|𝑌𝐼=𝑖;𝐼′(𝑌 ) for the counterfactual

distribution of 𝑌 under intervention 𝐼 ′ given that we observed 𝑌 = 𝑖 under the

intervention 𝐼.

Definition 5 (Counterfactual Stability). A SCM of a categorical variable 𝑌 satisfies

counterfactual stability if it has the following property: If we observe 𝑌𝐼 = 𝑖, then

for all 𝑗 ̸= 𝑖, the condition
𝑝′𝑖
𝑝𝑖
≥ 𝑝′𝑗

𝑝𝑗
implies that 𝑃ℳ|𝑌𝐼=𝑖;𝐼′(𝑌 = 𝑗) = 0. That is,

if we observed 𝑌 = 𝑖 under intervention 𝐼, then the counterfactual outcome under

𝐼 ′ cannot be equal to 𝑌 = 𝑗 unless the multiplicative change in 𝑝𝑖 is less than the

multiplicative change in 𝑝𝑗.

Corollary 2. Ifℳ is a SCM which satisfies counterfactual stability, then if we observe

𝑌𝐼 = 𝑖, and
𝑝′𝑖
𝑝𝑖
≥ 𝑝′𝑗

𝑝𝑗
holds for all 𝑗 ̸= 𝑖, then 𝑃ℳ|𝑌𝐼=𝑖;𝐼′(𝑌 = 𝑖) = 1.

This definition and corollary encode the following intuition about counterfactuals:

If we had taken an alternative action that would have only increased the probability

of 𝑌 = 𝑖, without increasing the likelihood of other outcomes, then the same outcome

would have occurred in the counterfactual case. Moreover, in order for the outcome
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to be different under the counterfactual distribution, the relative likelihood of an

alternative outcome must have increased relative to that of the observed outcome.

The connection to monotonicity is given in Theorem 1, whose proof is deferred to

Section 4.5.

Theorem 1. Let 𝑌 = 𝑓𝑦(𝑡, 𝑢) be the SCM for a binary variable 𝑌 , where 𝑇 is also

a binary variable. If this SCM satisfies the counterfactual stability property, then it

also satisfies the monotonicity property with respect to 𝑇 .

4.3 Gumbel-Max SCMs Satisfy Counterfactual Stability

Unlike monotonicity with binary outcomes and treatments, the condition of counter-

factual stability does not obviously imply any closed-form solution for the counterfac-

tual posterior. Thus, we introduce a specific SCM which satisfies this property, and

discuss how to sample from the posterior distribution in a straightforward fashion.

We start by recalling the following fact, known as the Gumbel-Max trick (Luce, 1959;

Yellott, 1977; Yuille. & L, 2011; Hazan & Jaakkola, 2012; Maddison et al., 2014;

Hazan et al., 2016; Maddison et al., 2017):

Definition 6 (Gumbel-Max Trick). We can sample from a categorical distribution with

𝑘 categories as follows, where 𝑝𝑖 is the unnormalized probability 𝑃 (𝑌 = 𝑖): First, draw

𝑔1, . . . , 𝑔𝑘 from a standard Gumbel, which can be achieved by drawing 𝑢1, . . . , 𝑢𝑘 iid

from a Unif(0, 1), and assigning 𝑔𝑖 = − log(− log 𝑢𝑖). Then, set the outcome 𝑗 by

taking arg max𝑗 log 𝑝𝑗 + 𝑔𝑗.

Clearly, we can perform this for any categorical distribution, e.g., the transition

distribution 𝑝𝑖 = 𝑃 (𝑆 ′ = 𝑖|𝑆,𝐴); In particular, for any discrete variable 𝑌 whose

parents in a causal DAG are denoted X, a Gumbel-Max SCM assumes the following

causal mechanism, where g = (𝑔1, . . . , 𝑔𝑘) are independent Gumbel variables:

𝑌 = 𝑓𝑦(x,g) := arg max
𝑗
{log𝑃 (𝑌 = 𝑗|X = x) + 𝑔𝑗}
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Like any mechanism which replicates the conditional distribution under intervention,

this mechanism is indistinguishable from any other causal mechanism based on data

alone. That said, it does satisfy the property given in Definition 5.

Theorem 2. The Gumbel-Max SCM satisfies the counterfactual stability condition.

The intuition is that, when we consider the counterfactual distribution, the Gum-

bel variables are fixed. Thus, in order for the argmax (our observed outcome) to

change in the counterfactual, the log-likelihood of an alternative outcome must have

increased relative to our observed outcome.

We note that posterior inference in the Gumbel-Max SCM is straightforward.

Given a Gumbel-Max SCM as defined above, where 𝑌 = arg max𝑗 log 𝑝𝑗 + 𝑔𝑗 and

𝑝𝑗 := 𝑃 (𝑌𝐼 = 𝑗), we can draw Monte Carlo samples from the posterior 𝑃 (g|𝑌𝐼 = 𝑖)

using one of two approaches: First, we can use rejection sampling, drawing samples

from the prior 𝑃 (g) and rejecting those where 𝑖 ̸= arg max𝑗 log 𝑝𝑗 + 𝑔𝑗. Alternatively,

it is known (Maddison et al., 2014; Maddison & Tarlow, 2017) that in the posterior,

the maximum value and the argmax of the shifted Gumbel variables log 𝑝𝑗 + 𝑔𝑗 are

independent, and the maximum value is distributed as a standard Gumbel (in the case

of normalized probabilities). Thus, we can sample the maximum value first, and then

sample the remaining values from shifted Gumbel distributions that are truncated at

this maximum value. Then, for each index 𝑗, subtracting off the location parameter

log 𝑝𝑗 will give us a sample of 𝑔𝑗. We can then add this sample g to the log-probabilities

under 𝐼 ′ (i.e., logp′) and take the new argmax to get a sample of the counterfactual

outcome 𝑌 under intervention 𝐼 ′.

4.4 Intuition: Connection to Discrete Choice Models

The Gumbel-Max sampling mechanism was initially introduced in the discrete-choice

literature (Luce, 1959), where it is used as a generative model for decision-making

under utility maximization (Train, 2002; Aguirregabiria & Mira, 2010), where the log

probabilities may be assumed to follow some functional form, such as being linear in
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features. This is motivated by understanding the impact of different characteristics

on consumer choices, see (Aguirregabiria & Mira, 2010, Example 1).

We discuss this connection further in this section, but note the contrast with

our approach: Whereas the traditional discrete choice literature assumes a particular

functional form (e.g., linear in features) for the log probabilities, we decouple this

structural mechanism (for estimation of counterfactuals) from the statistical model

used to estimate the conditional probability distributions under interventions. We

encourage the reader to consult (Train, 2002, e.g., Chapter 2) for more details, but

we highlight some relevant pieces of intuition below, with their connection to the

counterfactual stability condition.

Discrete choice models that utilize Gumbel noise are known in the econometrics

literature as logit discrete choice models, and are part of a broader class of discrete-

choice models which are derived on the principle of utility maximization, known as

random utility models. This literature is motivated by consumers as decision-makers,

deciding between different discrete alternatives. In the context of modelling state

transitions in an MDP, we can make the analogy that the ‘decision-maker’ is nature,

and the choice is the next discrete state. First, we introduce two core assumptions:

The concept of random utility maximization, which is introduced as a core assumption

of discrete-choice models in (Train, 2002), and the assumption of additive separability.

Random Utility Maximization We assume that the decision-maker acts to optimize

utility. In particular, the decision-maker associates some utility 𝑈𝑖 with each discrete

choice / alternative 𝑖, and chooses the alternative 𝑖 if and only if 𝑈𝑖 > 𝑈𝑗 ∀𝑖 ̸=

𝑗. Because 𝑈 is not observed directly, we treat it as a random variable. We only

observe the conditional probability distribution on 𝑌 , known as the conditional choice

probability, given by

𝑃 (𝑌 = 𝑖|𝑋) =

∫︁
1 [𝑈𝑖 > 𝑈𝑗, ∀𝑗 ̸= 𝑖] 𝑝(𝑈 |𝑋)𝑑𝑈 (4.1)
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Additive Separability Without loss of generality, the utility 𝑈 can be re-written in

terms of a deterministic component which depends on observable variables 𝑋, and an

unobserved component 𝜖, so that 𝑈𝑗 = 𝑉𝑗 + 𝜖𝑗, where 𝑉 is assumed to be a function

of observable variables, and is called the representative utility. With that in mind,

Equation (4.1) can be rewritten as

𝑃 (𝑌 = 𝑖|𝑋)

=

∫︁
1 [𝑉𝑖(𝑥) + 𝜖𝑖 > 𝑉𝑗(𝑥) + 𝜖𝑖,∀𝑗 ̸= 𝑖] 𝑝(𝜖|𝑋)𝑑𝜖 (4.2)

The assumption of additive separability states that the unobserved components 𝜖 are

independent of the observed components, i.e., 𝜖 ⊥⊥ 𝑋. Tying these assumptions back

to our proposed notion of counterfactual stability, the implication from a counter-

factual perspective is that if we intervene on the variables 𝑋, we do not change the

values of 𝜖 as a result of additive separability. Thus, the assumption of random util-

ity maximization implies that if we observe 𝑌𝑥 = 𝑖, then a necessary condition for

substituting 𝑗 for 𝑖 is that

𝑉 (𝑥′)𝑗 − 𝑉 (𝑥)𝑗 > 𝑉 (𝑥′)𝑖 − 𝑉 (𝑥)𝑖 (4.3)

Different choices of discrete-choice models imply different functional forms for 𝑉 and

different distributions on 𝜖. In the logit model, the 𝜖𝑖 variables are assumed to be

drawn iid (over alternatives 𝑖) from a Gumbel distribution (also known as a Type 1

Extreme Value distribution). This implies that

𝑃 (𝑌 = 𝑖|𝑋) =
exp𝑉𝑖(𝑥)∑︀
𝑗 exp𝑉𝑗(𝑥)

(4.4)

Because any scaling or shifting of the utility is irrelevant, we can set the scale of 𝑉

such that 𝑉𝑖 = log 𝑝𝑖, consistent with Equation (4.4), and see that Equation (4.3)

corresponds to the counterfactual stability condition.
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4.5 Appendix: Proofs

Theorem 1. Let 𝑌 = 𝑓𝑦(𝑡, 𝑢) be the SCM for a binary variable 𝑌 , where 𝑇 is also

a binary variable. If this SCM satisfies the counterfactual stability property, then it

also satisfies the monotonicity property with respect to 𝑇 .

Proof. To simplify notation further, let 𝑝𝑡=1 := 𝑃 (𝑌 = 1|𝑑𝑜(𝑇 = 1)), 𝑝𝑡=0 := 𝑃 (𝑌 =

1|𝑑𝑜(𝑇 = 0)), and let 𝑌𝑡 := 𝑌𝑑𝑜(𝑇=𝑡). Without loss of generality, assume that 𝑝𝑡=1 ≥

𝑝𝑡=0.

To show that counterfactual stability implies monotonicity, we want to show that

the probability of the event (𝑌1 = 0 ∧ 𝑌0 = 1) is equal to zero. We will do so

by proving both cases: First that 𝑃ℳ|𝑌0=1;𝑑𝑜(𝑇=1)(𝑌 = 0) = 0 and second that

𝑃ℳ|𝑌1=0;𝑑𝑜(𝑇=0)(𝑌 = 1) = 0. We can start with the assumption that 𝑝𝑡=1 ≥ 𝑝𝑡=0

and write:

𝑝𝑡=1 ≥ 𝑝𝑡=0

=⇒ 𝑝𝑡=1(1− 𝑝𝑡=0) ≥ 𝑝𝑡=0(1− 𝑝𝑡=1)

=⇒ 𝑝𝑡=1

𝑝𝑡=0
≥ (1− 𝑝𝑡=1)

(1− 𝑝𝑡=0)

Using the counterfactual stability condition, the last inequality implies that if we

observe 𝑌0 = 1, then the counterfactual probability of 𝑌1 = 0 is equal to 𝑃ℳ|𝑌0=1;𝑑𝑜(𝑇=1)(𝑌 =

0) = 0, as desired. For the second case, where we observe 𝑌1 = 0, we can simply ma-

nipulate the inequality to see that

(1− 𝑝𝑡=0)

(1− 𝑝𝑡=1)
≥ 𝑝𝑡=0

𝑝𝑡=1

Which yields the conclusion that 𝑃ℳ|𝑌1=0;𝑑𝑜(𝑇=0)(𝑌 = 1) = 0, as desired, completing

the proof.

Theorem 2. The Gumbel-Max SCM satisfies the counterfactual stability condition.

Proof. Recall that we write the shorthand 𝑝𝑖 := 𝑃ℳ;𝐼(𝑌 = 𝑖), and 𝑝′𝑖 := 𝑃ℳ;𝐼′(𝑌 = 𝑖).

Suppose that 𝑌 is generated from a Gumbel-Max SCMℳ under intervention 𝐼, and

57



we observe that 𝑌𝐼 = 𝑖. The Gumbel-Max SCM implies that almost surely:

log 𝑝𝑖 + 𝑔(𝑖) > log 𝑝𝑗 + 𝑔(𝑗) ∀𝑗 ̸= 𝑖 (4.5)

To demonstrate that the Gumbel-Max SCM satisfies the counterfactual stability con-

dition, we need to demonstrate that
𝑝′𝑖
𝑝𝑖
≥ 𝑝′𝑗

𝑝𝑗
=⇒ 𝑃ℳ|𝑌𝐼=𝑖;𝐼′(𝑌 = 𝑗) = 0 for all

𝑗 ̸= 𝑖.

We will proceed by proving the contrapositive, that for all 𝑗 ̸= 𝑖, 𝑃ℳ|𝑌𝐼=𝑖;𝐼′(𝑌 =

𝑗) ̸= 0 =⇒ 𝑝′𝑖
𝑝𝑖
<

𝑝′𝑗
𝑝𝑗

.

Fix some index 𝑗 ̸= 𝑖. The condition 𝑃ℳ|𝑌𝐼=𝑖;𝐼′(𝑌 = 𝑗) ̸= 0 implies that there

exist values 𝑔(𝑖), 𝑔(𝑗) such that

log 𝑝′𝑖 + 𝑔(𝑖) < log 𝑝′𝑗 + 𝑔(𝑗) (4.6)

Because the Gumbel variables 𝑔(𝑖), 𝑔(𝑗) are fixed across interventions, this implies

there exist values for these variables which satisfy both inequalities (4.5) and (4.6).

Thus, we proceed by subtracting inequality (4.5) from inequality (4.6), maintaining

the direction of the inequality and cancelling out the Gumbel terms. The rest is

straightforward manipulation using the monotonicity of the logarithm.

log 𝑝′𝑖 − log 𝑝𝑖 < log 𝑝′𝑗 − log 𝑝𝑗

log(𝑝′𝑖/𝑝𝑖) < log(𝑝′𝑗/𝑝𝑗)

(𝑝′𝑖/𝑝𝑖) < (𝑝′𝑗/𝑝𝑗)

This demonstrates that 𝑃ℳ|𝑌𝐼=𝑖;𝐼′(𝑌 = 𝑗) ̸= 0 =⇒ (𝑝′𝑖/𝑝𝑖) < (𝑝′𝑗/𝑝𝑗) as desired, and

taking the contrapositive completes the proof.
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Chapter 5

SCMs with Additive Noise for

Continuous Variables

In this brief chapter, we collect some thoughts on structural causal models that reflect

the conditional probability distribution of continuous random variables. Although

this is not the primary focus of this thesis, we include it here for completeness, as a

reference for how the conceptual ideas of this thesis (e.g., decomposition of reward and

investigation of counterfactual trajectories) can be applied in the continuous setting.

In contrast to the categorical case, we do not have specific non-identifiability

examples for continuous SCMs, nor do we have a corresponding assumption, analogous

to counterfactual stability, which suggests specific SCMs for this case. However, we

note that a common model assumed in this case takes the form of Equation 5.1, where

the next state 𝑠𝑡+1 ∈ R𝑛 is assumed to follow a Gaussian distribution conditioned on

the previous state 𝑠𝑡 ∈ R𝑛 and action 𝑎 ∈ 𝒜, and the mean and covariance are

determined by arbitrary functions 𝜇𝜃 : R𝑛 × 𝒜 → R𝑛 and Σ𝜃 : R𝑛 × 𝒜 → R𝑛 𝑡𝑖𝑚𝑒𝑠𝑛

of the previous state and action. For instance, in Chua et al. (2018), these are

parameterized by neural networks, and Σ𝜃 is a diagonal covariance.

P(𝑠𝑡+1 | 𝑠𝑡, 𝑠𝑡) = 𝒩 (𝜇𝜃(𝑠𝑡, 𝑎𝑡),Σ𝜃(𝑠𝑡, 𝑎𝑡)) (5.1)

This particular model can be re-written equivalently as the following SCM with
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additive noise that is drawn independently at each time step, where we write 𝐿𝜃 as

the Cholesky decomposition of Σ𝜃 such that 𝐿𝜃𝐿
𝑇
𝜃 = Σ𝜃. In the case where Σ𝜃 is a

diagonal covariance, as in Chua et al. (2018), this is simply the element-wise square

root of Σ𝜃.

𝑠𝑡+1 = 𝜇𝜃(𝑠𝑡, 𝑎𝑡) + 𝐿𝜃(𝑠𝑡, 𝑎𝑡) · 𝜖𝑡 (5.2)

𝜖𝑡 ∼ 𝒩 (0, 𝐼𝑛) (5.3)

In a similar fashion, many models of dynamics used for reinforcement learning

in continuous state spaces can be re-formulated as structural causal models with

additive noise that follows some known distribution. Moreover, if the only source

of stochasticity in the transitions is an additive term which is an invertible function

of 𝜖𝑡, as in Equation 5.2, then counterfactual inference is particularly simple, as the

exogenous term 𝜖𝑡 can be identified exactly from the observable prediction error.
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Chapter 6

Illustrative Applications with Synthetic

Data

In this chapter, we develop some intuition for how counterfactuals could be used

in practice, using some illustrative applications. First, in Section 6.1 we use a toy

example of a 2D gridworld to illustrate the differences between counterfactual tra-

jectories and model-based trajectories. Then we give an illustrative example of how

counterfactuals could be used to ‘debug’ a policy in Section 6.2, using a synthetic

environment of sepsis management. We note that all code required to replicate these

synthetic experiments will be made available at https://github.com/clinicalml/

cf-policy-introspection.

6.1 Building Intuition: 2D Gridworld

To illustrate the concepts behind counterfactual trajectories, we start with a simple

2D example, inspired by a similar experimental setup in (Gottesman et al., 2019b).1

In Section 6.1.1, we describe the simulator setup, and in Section 6.1.2 we demonstrate

how counterfactual inference proceeds in this setting. Finally, we show in Section 6.1.3

how this enables us to decompose differences in reward (between a target and behavior

policy) across individual episodes.

1We thank Omer Gottesman for providing the original code used in his work
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As an addendum, in Section 6.1.4 we demonstrate how counterfactuals take max-

imum advantage of the information present in a trajectory, by making inferences over

all sources of variation, not only a single per-trajectory latent variable.

6.1.1 Simulator Setup

In this example, the agent is navigating a 2D domain, with state 𝑠 ∈ [0, 1]2 and four

possible actions 𝑎 ∈ {[0, 0.1], [0.1, 0], [0,−0.1], [−0.1, 0]} corresponding to the four

cardinal directions (north, east, south, and west). The goal of the agent is to reach

the goal region 𝐺 = {(𝑥, 𝑦) : 𝑥 ∈ [0.9, 1.0], 𝑦 ∈ [0.9, 1.0]}, and the reward is −1 at

each time point until the agent enters the goal region, when it receives a reward of

+10. The dynamics are as follows

𝑠𝑡+1 = 𝑠𝑡 + 𝑎𝑡 + 𝑤(𝑠𝑡; 𝛽) + 𝜖𝑡

Where 𝜖𝑡 ∼ 𝒩 (0, 𝐼𝜎2
𝜖 ) represents time-varying gusts of wind, and 𝑤(𝑠𝑡; 𝛽) = [−𝛽 ·

𝑦𝑡, 0] is a cross-wind which pushes in either the western or eastern direction, with a

magnitude that increases as the agent progresses north. The 𝛽 parameter is drawn

uniquely for each instance from a Gaussian 𝛽 ∼ 𝒩 (𝜇𝛽, 𝜎
2
𝛽). We will refer to this as

the prior on 𝛽, but we note that this just represents the population-level distribution

of 𝛽, and could be the posterior population distribution after many trajectories have

been observed. We call it a prior to distinguish from the counterfactual posterior over

the particular 𝛽 in each trajectory, which we will seek to infer as part of performing

counterfactual inference. Thus, the entire generative model is given by the following,

where 𝜋(𝑠𝑡) is a deterministic policy which we describe in the next section.

𝛽 ∼ 𝒩 (𝜇𝛽, 𝜎
2
𝛽) (6.1)

𝜖𝑡 ∼ 𝒩 (0, 𝐼𝜎2
𝜖 ) (6.2)

𝑎𝑡 = 𝜋(𝑠𝑡) (6.3)

𝑠𝑡+1 = 𝑠𝑡 + 𝑎𝑡 + 𝑤(𝑠𝑡; 𝛽) + 𝜖𝑡 (6.4)
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We can view the trajectories as arising from the POMDP / Structural Equation

Model given in Figure 6-1, where we leave out the rewards for the sake of simplifying

exposition.

𝜖1

𝑠1𝑠0

𝑎1

𝑠2

𝜖2

𝑎2

𝑠3

𝜖3

𝛽

Figure 6-1: The structural causal model model for our 2D sequences, where each black
box is a deterministic function of its parents, and the initial state 𝑠0 is an observed
random variable. In practice, all of our sequences start at the same position, so 𝑠0 is
a deterministic value.

6.1.2 Generating Counterfactual Trajectories

In Figure 6-2a we plot a trajectory from this model, which we will use as a running

example, where 𝜎𝜖 = 0.001, 𝜇𝛽 = 0.03, 𝜎𝛽 = 0.02. This trajectory follows a myopic

behavior policy 𝜋𝑏(𝑠𝑡), which is defined with respect to a series of ‘checkpoint’ regions

that the agent must enter before heading to the goal region in the top right, and

at each time point it takes the action which will minimizes the ℓ2 distance between

a naive prediction 𝑠′𝑡+1 = 𝑠𝑡 + 𝑎𝑡 and the center of the next region. In this case,

the policy 𝜋𝑏 seeks to traverse the regions denoted B1, B2 before seeking the region

denoted G. The particular draw of 𝛽 in this case is 0.061.

In this setting, counterfactual inference starts with posterior inference over 𝛽, 𝜖,

which factorizes as

𝑝(𝛽, 𝜖|x,y, a) = 𝑝(𝜖|𝛽,x,y, a)𝑝(𝛽|x,y, a).

Thus, the first step is posterior inference over 𝛽, the results of which are given in
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G

B1

B2

(a) An observed (factual) trajectory where
𝛽 = 0.061, which traverses the regions B1,
B2 before seeking the goal region G

0.04 0.02 0.00 0.02 0.04 0.06 0.08 0.10
Beta

Actual
Posterior
Prior

(b) Prior versus posterior distribution over
the value of 𝛽 for this specific instance

Figure 6-2: Factual trajectory and posterior over latent variable 𝛽

Figure 6-2b using MCMC.2 Note that once we draw a sample of 𝛽 from the pos-

terior, we can uniquely identify 𝜖 from Equation 6.4, so the only uncertainty in the

counterfactual is due to 𝛽.

The advantage of the counterfactual approach is that it allows us to associate a

set of counterfactual trajectories with every factual trajectory. This is demonstrated

in Figure 6-3a, where we generate counterfactual trajectories under a target policy 𝜋𝑡

which seeks to traverse a different set of checkpoints (T1, T2) before heading to the

goal region G. We make two notes about the counterfactual trajectories, contrasting

them with model-based trajectories in Figure 6-3b (generated using the model given

by Equations (6.1-6.4), starting at the same point): First, the counterfactual trajec-

tories are identical to the factual trajectory up until the checkpoint B1/T1, because

both policies take the same actions up until that point. Second, the counterfactual

trajectories have much less variation because they incorporate all the information

from the original trajectory (including both time-dependent and time-independent

2We use Pyro (Bingham et al., 2018) to perform MCMC.
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G

B1, T1

B2

T2

Factual
Counterfactual

(a)

G

B1, T1

B2

T2

Factual
Model-Based (Prior)

(b)

Figure 6-3: In both cases, the target policy 𝜋𝑡(𝑠𝑡) is used, which seeks to pass through
checkpoints T1 and T2 before proceeding to the goal region G. In (a) we see 30 tra-
jectories from the counterfactual posterior, which can be contrasted with (b) where we
see 30 trajectories sampled from the generative model given by Equations (6.1-6.4),
starting from the same point.

variation) through the posterior, whereas a model-based roll-out starting from the

same point does not.

6.1.3 Decomposition of Reward via Counterfactuals

We can use these counterfactuals to associate with each factual trajectory an expected

reward under the counterfactual ‘had the target policy been used instead’, and use

this to examine where those differences are projected to be largest. Figure 6-4 demon-

strates this over 100 factual trajectories (which follow the behavior policy) and their

expected counterfactual reward (under the target policy)3. We plot the factual re-

ward observed against the counterfactual reward4, and shade each point according

to the expected value of 𝛽 under the posterior. This visually demonstrates that the

difference in reward is greatest for larger values of 𝛽, but does so in a way that can

3We used 30 counterfactual trajectories for each factual trajectory, in order to compute the
expected counterfactual reward.

4One point is excluded from the plot, with a factual / counterfactual reward of approximately
-60 and -18 respectively.
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be tied back to individual episodes.

In a real-data application, this type of analysis can be done in an exploratory

fashion, to (a) search for trajectories where the difference in reward is estimated to

be largest, and (b) examine what differentiates those trajectories from the others.
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Figure 6-4: Decomposition of reward

6.1.4 Addendum: Counterfactual vs. Model-Based Trajectories

In this section, we demonstrate how counterfactuals take maximum advantage of the

information present in a trajectory, by making inferences over all sources of variation.

In this case, we make inferences over both 𝛽 and 𝜖, and this allows us to draw a

contrast with two other ways that, conceptually, we could have generated trajectories

from the same model.

1. Model-based roll-out: Sample a new 𝛽 ∼ 𝑝(𝛽), and then sample a new 𝜖𝑡 ∼ 𝑝(𝜖)

at each time step. Given a deterministic policy, these random parameters imply

a fixed trajectory.

2. Model-based roll-out (posterior on 𝛽): Sample 𝛽 ∼ 𝑝(𝛽|s, a), and then sample

a new 𝜖𝑡 ∼ 𝑝(𝜖) at each time step.
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3. Counterfactual roll-out: Sample 𝛽, 𝜖 ∼ 𝑝(𝛽, 𝜖|s, a), which in this model is equiv-

alent to sampling a value for 𝛽 from the posterior, and then inferring the unique

value of 𝜖𝑡 for each time step.

To demonstrate the differences between these approaches, we use two environ-

ments: The first environment is the same as the one described above (with 𝜎𝜖 =

10−3, 𝜇𝛽 = 0.03, 𝜎𝛽 = 0.02), and the second has a lower variance over 𝜖 but a higher

prior variance on 𝛽 (with 𝜎𝜖 = 10−4, 𝜇𝛽 = 0.03, 𝜎𝛽 = 0.04). A single trajectory is

sampled from each environment5, and are given in Figure 6-5, along with the resulting

posterior over 𝛽.

With these two environments in hand, we can explore the differences between the

three approaches given above. This is illustrated in Figure 6-6. In particular, we note

the drawbacks of the second approach (generating a posterior over 𝛽 alone), which

has the appealing feature that it does not require a structural causal model with

deterministic functions, only a graphical model with some time-independent latent

factor 𝛽. Intuitively, this approach will face two drawbacks, which are illustrated in

Figure 6-6:

• First, it is not guaranteed to replicate the same outcomes if the same actions

are taken, violating our intuition for how a counterfactual should behave. This

can be seen in Figure 6-6, where the counterfactuals are the only trajectories

that exhibit this behavior.

• Second, it will ignore the information provided by 𝜖, leading to unnecessary

variance in the roll-out. If we have a SCM which is an accurate representation of

the environment (as we do in this case), we can reduce the variance substantially

by taking this information into account, especially when the variance of 𝜖 is

high. This is also seen in Figure 6-6, where in the top row there is little (visual)

difference between the two model-based approaches.

This concludes our conceptual example, which should drive home the idea that,

if we have an accurate SCM of the environment, we can construct counterfactual

5The trajectory from the prior section is used for the first environment, for continuity
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Figure 6-5: A single trajectory sampled from each of the two environments. The latter
environment has a higher prior variance over 𝛽, and a lower variance over 𝜖. Below
the trajectories are the corresponding prior and posterior distributions over 𝛽.
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Figure 6-6: Comparison of the three approaches given above. The first row represents
the first environment, where 𝜎𝜖 = 10−3, 𝜎𝛽 = 0.02, and the second row represents the
second environment, where 𝜎𝜖 = 10−4, 𝜎𝛽 = 0.04. The black trajectory represents a
factual trajectory, and is constant across the columns. From left to right, we have
counterfactual trajectories (which use the posterior on 𝛽 and 𝜖), model-based trajecto-
ries which only use a posterior on 𝛽, and model-based trajectories which use neither,
just sampling from the prior. Note that in the first row, using the posterior on 𝛽 does
not reduce the variation as much as it does in the second row, due to the differences
in 𝜎𝜖.

trajectories which (a) allow us to decompose differences in reward across individ-

ual episodes, and (b) are easier to contrast with the original trajectory than other

model-based trajectories (e.g., without using a SCM), through modelling all sources

of variation in the factual trajectory. In particular, using a SCM allows us to isolate

only the differences which are due to the change in policy, keeping all independent

sources of variation constant. In the next section, we will take this a step further, and

show how counterfactuals can help us ‘debug’ a policy and model of an environment,

even if our SCM is not entirely correct.
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6.2 Illustrative Example: Sepsis Management

As discussed in Chapter 1, our hope is to provide a method for qualitative intro-

spection and ‘debugging’ of RL models, in settings where a domain expert could

plausibly examine individual trajectories. We give an illustrative example of this use

case here, motivated by recent work examining the use of RL algorithms for treat-

ing sepsis among intensive-care unit (ICU) patients. In particular, we use a simple

simulator of sepsis and “debug” a RL policy that is learned on observed trajectories.

This replicates an analysis originally presented in our publication (Oberst & Sontag,

2019).6

An analysis like this requires three ingredients: First, we are given observed trajec-

tories, but cannot directly interact with the environment7. Second, we have access to

a structural causal model of the environment. In this case, that model is a finite MDP,

learned based on observed samples, combined with the assumption of a Gumbel-Max

SCM for transition distributions. Finally, we need a target policy to evaluate. We

refer to the policy which generated the data as the behavior policy, to distinguish it

from the target policy.

In Sections 6.2.1-6.2.2 we describe our illustrative scenario, in which a target RL

policy appears to perform well using off-policy evaluation methods such as weighted

importance sampling, when it is actually much worse than the behavior policy. In

Sections 6.2.3-6.2.4 we then demonstrate how our method could be used to identify

a promising subset of trajectories for further introspection, and uncover the flaws in

the target policy using side information (e.g., chart review of individual patients).

6.2.1 Setup of Illustrative Example

Environment: Our simulator includes four vital signs (heart rate, blood pressure, oxy-

gen concentration, and glucose levels) with discrete states (e.g., low, normal, high),

6We also thank Christina X. Ji and Fredrik D. Johansson for their work on developing an earlier
version of the sepsis simulator.

7We do not assume access to a simulator; In this example, it is used only for obtaining the initial
observed trajectories
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along with three treatment options (antibiotics, vasopressors, and mechanical venti-

lation), all of which can be applied at each time step. Reward is +1 for discharge of

a patient, and -1 for death. Discharge occurs only when all patient vitals are within

normal ranges, and all treatments have been stopped. Death occurs if at least three

of the vital signs are simultaneously out of the normal range. In addition, a binary

variable for diabetes is present with 20% probability, which increases the likelihood

of fluctuating glucose levels.

Observed Trajectories: For the purposes of this illustration, the behaviour policy

was constructed using Policy Iteration (Sutton & Barto, 2017) with full access to

the parameters of the underlying MDP (including diabetes state). This was done

deliberately to set up a situation in which the observed policy performs well. To

introduce variation, the policy takes a random alternative action w.p. 0.05. Using

this policy, we draw 1000 patient trajectories from the simulator, with a maximum of

20 time steps. If neither death nor discharge is observed, the observed reward is zero.

Structural Causal Model: For this illustration, we ‘hide’ glucose and diabetes

state in the observed trajectories; Given this reduced state-space, we learn the pa-

rameters of the finite MDP by using empirical counts of transitions and rewards from

the 1000 observed trajectories, with death and discharge treated as absorbing states.

For state / action pairs that are not observed, we assume that any action leads to

death, and confirm that this results in a target policy which never takes an action

that has never been observed. For counterfactual evaluation, we make the assumption

that the transitions are generated by a Gumbel-Max SCM.

Target Policy: The target policy is learned using Policy Iteration on the parame-

ters of the learned MDP. Because the target policy is learned using a limited number

of samples, as well as an incomplete set of variables, it should perform poorly relative

to the behavior policy.

Further details of the simulator can be found in the source code, which will be made

available at https://www.github.com/clinicalml/cf-policy-introspection.
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6.2.2 Off-Policy Evaluation Can Be Misleading

First, we demonstrate what might be done to evaluate this target policy without the

use of counterfactual tools. In Figure 6-7, we compare the observed reward of the

actual trajectories against the estimated reward of the target policy. Using weighted

importance sampling on the given trajectories, the target policy appears superior to

the behavior policy. We also use the parameters of the learned MDP to perform

model-based off-policy evaluation (MB-PE), using the MDP as a generative model

to simulate trajectories and their expected reward. Both of these suggest that the

target policy is superior to the behavior policy. In reality, the target policy is inferior

(as expected by construction), as verified by drawing new samples from the simulator

under the target policy. This corresponds conceptually to what would happen if the

target policy were deployed “in the wild”.
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Figure 6-7: Estimated reward under the target (RL) policy, with 95% uncertainty
intervals generated through 100 bootstrapped samples (with replacement) of the same
1000 observed trajectories (for 1-4) and of 1000 new trajectories under the target
policy (for 5). (1) Obs: Observed reward under the behavior policy. (2) WIS:
Estimated reward under the target policy using weighted importance sampling. (3)
MB: Estimated reward using the learned MDP as a generative model. (4) CF: Esti-
mated reward over counterfactual trajectories (5 per observed trajectory). (5) True:
Observed reward under the target policy, over 1000 newly simulated trajectories.

With this in mind, we demonstrate how examining individual counterfactual tra-
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jectories gives insight into the target policy. The first step is to apply counterfactual

off-policy evaluation (CF-PE) using the same MDP and the Gumbel-Max SCM. This

yields similarly optimistic results as MB-PE. However, by pairing counterfactual

outcomes with observed outcomes of individual patients, we can investigate why the

learned MDP concludes (wrongly) that the target policy would be so successful.

6.2.3 Identification of Informative Trajectories

To debug this model (without access to a simulator), we can start by drawing coun-

terfactual trajectories for each individual patient under the target policy. With these

in hand, we can assign each individual patient to one of nine categories, based on the

most frequently occurring counterfactual outcome (death, no change, or discharge) in

Figure 6-8. This highlights individual trajectories for further analysis, as discussed in

the next section8.
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Figure 6-8: Decomposition of 1000 observed patient trajectories based on observed
outcome (Died, no change, and discharged) vs counterfactual outcome under the tar-
get policy, using the most common outcome over 5 draws from the counterfactual
posterior.

8We only draw 5 counterfactuals per observed trajectory for illustrative purposes here, but note
that standard concentration arguments could be used to quantify how many of these independent
draws are required to achieve a desired precision on counterfactual quantities of interest, e.g., the
probability of death
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6.2.4 Insights from Examining Individual Trajectories

Using this decomposition, we can focus on the 10% of observed trajectories where the

model concludes that “if the physician had applied the target policy, these patients

would have most likely lived”.

This is a bold statement, but also one that is plausible for domain experts to in-

vestigate (e.g., through chart review of these specific patients), to try and understand

the rationale. We illustrate this type of analysis in Figure 6-9, which shows both the

observed trajectory and the counterfactual trajectories for a simulated patient.

This example illustrates a dangerous failure mode, where the target policy would

have halted treatment despite the glucose vital being dangerously low (e.g., at 𝑡 =

5, 7, 8, 11). Under the learned MDP, the counterfactual optimistically shows a speedy

discharge as a result of halting treatment. To understand why, recall that discharge

occurs when all four vitals are normal and treatment is stopped. Because diabetes

and glucose fluctuations are relatively rare, and because the MDP does not observe

either, the model learns that there is a high probability of discharge when the first

three vitals are normal, and the action of ‘stop all treatments’ is applied.

6.2.5 Addendum: Impact of Hidden State

In the experiments given above, we hide the glucose and diabetes state from the model

of dynamics used for the RL policy. In this section we explore the impact of that

choice on the off-policy evaluations, as well as on the quality of the RL policy.

To demonstrate, in Figure 6-10, we replicate Figure 6-7, but with some important

differences. First, instead of using 100 bootstrapped samples of the original 1000

trajectories, we instead repeat the entire process 100 times, with an independent set

of trajectories drawn from the simulator in each case. These uncertainty intervals are

wider, reflecting the variation which is not captured by bootstrapping alone. Second,

we compare the use of a WIS estimator used on the training data (i.e., the original 1000

episodes used to learn the model of dynamics), with a WIS estimator used on a held-

out set of 1000 independent episodes. While the example given in the Section 6.2.2 is
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Figure 6-9: Observed and counterfactual trajectories of a patient. The first four plots
show the progression of vital signs, and the last three show the treatment applied. For
vital signs, the normal range is indicated by red dotted lines. The black lines show the
observed trajectory, which ends in death (signified by the red dot), and the blue lines
show five counterfactual trajectories all of which end in discharge, signified by green
dots. The glucose vital sign was not included in the model, and hence does not have
a counterfactual trajectory. Note how this differs from a newly simulated trajectory
of a patient with the same initial state, e.g., all the counterfactual trajectories are
identical to the observed trajectory up to a divergence in actions (𝑡 = 2).

meant to conceptually capture what might happen in a single analysis (where only a

single set of trajectories is available), Figure 6-10 demonstrates the variability across
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Figure 6-10: Boxplots show the median and intervals which capture 95% of the 100
evaluations, each time with a newly simulated set of 1000 episodes used for training
and 1000 episodes used for the held-out WIS estimator; WIS (train) is used on the
training episodes, as in the previous sections, and WIS (held-out) is performed on the
held-out set of 1000 episodes

analyses, including those with access to a large held-out set of trajectories.

Towards understanding the impact of hiding variables from the RL policy, we

performed the same experiment again, but giving the RL policy access to the entire

state space. The results are shown in Figure 6-11, and the results from both figures

are shown in Table 6.1

Table 6.1: Performance given as Mean (95% CI) from Figures 6-10- 6-11

Hidden state No hidden state

Observed Reward 0.31 (0.27, 0.35) 0.31 (0.27, 0.35)
WIS (train) 0.61 (-0.42, 0.99) 0.58 (-0.23, 0.92)
WIS (heldout) 0.32 (-0.92, 0.99) -0.04 (-0.94, 0.80)
MB Estimate 0.81 (0.57, 0.96) 0.58 (0.37, 0.73)
True RL Reward -0.27 (-0.59, 0.05) -0.19 (-0.41, 0.00)

There are several reasons why weighted importance sampling, and other off-policy

evaluation methods, could fail to capture the true performance of a target policy.

These include issues like confounding and small sample sizes, as discussed in (Gottes-

man et al., 2019a). In this particular synthetic example, all of the following factors

may play a role in the above results, but it is difficult to say conclusively how strong

76



Obs WIS (train) WIS (heldout) MB True
−1.0

−0.5

0.0

0.5

1.0

Av
er

ag
e 

Re
wa

rd

Figure 6-11: Same setup as Figure 6-10, but allowing the model of dynamics (and the
estimated behavior policy) to see the full state

each factor is, and how they interact to produce the results: (i) Confounding due to

unobserved states, (ii) sample complexity of learning the MDP, which is more pro-

nounced when all state information is observed (144 states vs 1440 states), and (iii)

small sample sizes in both the training and held-out datasets.

With that in mind, we believe that building a more comprehensive simulated

environment, in which these various factors can be disentangled more precisely, would

be a valuable direction for future work. In addition, we believe such an environment

would be useful for evaluation of a variety of off-policy techniques beyond the limited

set discussed in this thesis e.g., more recently developed methods such as Thomas &

Brunskill (2016); Liu et al. (2018).
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Chapter 7

Real-Data Case Study: Sepsis

Management

In this chapter, we replicate the work of Komorowski et al. (2018), which seeks to

learn an optimal policy for treating patients with sepsis in the ICU, using model-based

RL techniques based on a finite MDP. We then apply our method of counterfactual

policy introspection to the resulting policy and model, with the goal of understanding

how well our approach works with a real-world example. We recapitulate a high-level

overview of their methodology in Section 7.1, while deferring to the original paper

for the full details of their setup. Having learned an MDP and corresponding policy

following their approach, we perform a similar set of analyses to those we performed

in Section 6.2: In Section 7.2 we estimate the reward using WIS on a held-out test

set, and in Section 7.3 we decompose the counterfactual reward across trajectories in

the test set.

Most notably, we find there are a very small number of patients who the model

believes would have died in the counterfactual, and (as such) most of the patients

who died in their observed trajectories are projected to have lived under the coun-

terfactual. We select a random trajectory from this latter set for further analysis in

Section 7.4, and review it alongside the full medical record, with the assistance of

a clinician. In short, we find that it recommends actions which are not appropriate

for this patient, based on information available in the clinical notes, and it expects
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unrealistic outcomes in the counterfactual as a result of those actions. We discuss

this case in more depth in Section 7.4.

Finally, in Section 7.5 we discuss some aspects of the original paper that made this

analysis challenging, as well as some broader reflections on the exercise as a test-case

for understanding where our approach works well, and where it has limitations.

7.1 Replicating Komorowski et al. (2018)

The authors of (Komorowski et al., 2018) seek to learn a better policy for treating

patients in the ICU with sepsis, as discussed previously in this thesis. In this section,

we describe their approach at a high level, as well as our methodology for replicating

it. We would like to thank Matthieu Komorowski for his assistance in replicating the

original paper.

Data Source There are two sources of data used in Komorowski et al. (2018); First,

they use data from the MIMIC-III database (Johnson et al., 2016), which contains de-

identified medical records from >50k admissions to critical care units at Beth Israel

Deaconess Medical Center in Boston, Massachusetts. It also contains out-of-hospital

mortality information using the Social Security Administration Death Master File.

In their work, MIMIC-III is used for model development, and a separate dataset is

used for model testing, the eICU Research Institute Database (eRI). We used the

MIMIC-III database for both model development and testing, using a held-out test

set of patients for evaluation, in part due to the availability of clinical notes.

Data Processing We used MATLAB code supplied by the authors at https://

github.com/matthieukomorowski/AI_Clinician to process the raw data into the

necessary format, which consists of one row of data for each 4-hour block of a patient’s

ICU stay, with a maximum of 20 rows per patient. We used slightly modified versions

of the scripts, which will be made available at https://github.com/clinicalml/

cf-policy-introspection. The original scripts are
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1. AIClinician_Data_extract_MIMIC3_140219.ipynb to extract data from the

MIMIC-III database

2. AIClinician_sepsis3_def_160219.m to create the sepsis cohort itself

3. AIClinician_MIMIC3_dataset_160219.m to construct the data table for down-

stream analysis

Learning and Evaluation We wrote our own python script to replicate the following

procedure for selecting the best policy, using the code provided in AIClinician_core_160219.m

as a guide when details were not clear from the main paper.

1. Center and scale all of the non-binary variables across the entire dataset, using

log transformations where appropriate, and converting binary variables into

[−0.5, 0.5]. For the two action variables (fluids and vasopressors), discretize

into 5 bins, with the first reserved for zero treatment, and the remaining 4

based on quantiles over the entire dataset. Hold out 20% of the MIMIC-III

data (by patient ID) as a test set.

2. Repeat 500 times, using a different 80/20 train / validation split on the remain-

ing patient IDs:

(a) Use K-Means clustering on 25% of the data1 to assign each 4-hour block

to one of 750 states

(b) Use 90-day survival as the reward signal, with 100,−100 corresponding

to survival and death, respectively. This reward is obtained at the end

of a trajectory (or after 20 steps, whichever is lower). Create two new

absorbing states to reflect these outcomes.

(c) Use empirical transition counts (state, action → state) to fill in the (three

dimensional) transition matrix 𝑃 (𝑆 ′|𝑆,𝐴), ignoring any state / action pair

with fewer than 5 observations (we will refer to this later as ‘truncation’).

In the original paper, many of the state / action pairs have no observations,

1This was done in the original paper for computational reasons, and we do the same
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or fewer than 5 observations, so the transition matrix is not fully defined.

We resolved this by treating any observed state / action pair as leading to

the ‘death’ absorbing state, towards the stated goal in Komorowski et al.

(2018) of preventing the RL policy from taking any action which is rarely

or never seen at a certain state. See Section 7.5 for more discussion on this

point. Rewards are defined with respect to the absorbing state, so this

suffices to define the MDP.

(d) Learn a policy from this MDP using Policy Iteration, and evaluate us-

ing Weighted Importance Sampling (WIS) on the validation set. In the

original paper, the physician policy is estimated on the training set using

the empirical transition counts, after truncation (described above), and

then softened so that all actions have non-zero probability. The approach

to softening could cause some probabilities to be negative, so we use a

slightly different approach, described in Section 7.5. The RL policy is also

softened to an 𝜖-greedy policy for the purposes of WIS, where the learned

action is taken with 99% probability, and otherwise a random alternative

is taken.

(e) Calculate a 95% confidence interval using bootstrapped validation samples,

and record the lower bound.

3. Using the k-means clustering, estimated MDP, and the resulting policy which

obtained the highest WIS lower bound on the validation set, evaluate on the

test set.

7.2 Off-Policy Evaluation with WIS

We give the results of our replication in Figure 7-1 and Tables 7.1 and 7.2. First, we

note that there is a large variation in WIS performance on the validation set, with

an average estimated reward which is lower than that of the behavior policy. Second,

the test WIS results (using the ‘best’ policy) are highly variable as well, as revealed
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through bootstrapping on the 4415 test samples in Table 7.2. This motivates the

rest of this section, where we dig further into the counterfactual trajectories to better

‘sanity check’ this policy.

Obs (Held-out) WIS (Held-out) MB100
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Figure 7-1: Observed reward of the physician policy (Obs) versus the estimated reward
of the learned RL policy using both weighted importance sampling on the validation
set (WIS) as well as a model-based (MB) estimate derived from simulating 1000 tra-
jectories, using the learned policy, on the learned MDP. Box-plots show the median
and 95% range across 500 iterations. Higher is better.

Table 7.1: Results from 500 iterations of the procedure described in Section 7.1. Mean,
median, and 95% range calculated over all iterations, and 1000 simulated trajectories
were used to derive the model-based result, using the same MDP that was used to
learn the policy. Higher is better.

Mean Median 95% range

Observed (Validation) 59.33 59.43 (56.81, 61.85)
WIS (Validation) 53.00 76.64 (-73.00, 99.91)
Model-based 90.22 90.20 (87.85, 92.70)

Table 7.2: Performance of the chosen policy on the held-out test set of 4415 trajecto-
ries, using bootstrapping (750 iterations) to estimate the distribution

Mean 2.5% 25% 50% 75% 97.5%

Observed 60.28 57.83 59.46 60.32 61.09 62.82
WIS 60.26 -28.42 47.72 69.42 83.50 96.59

7.3 Decomposition with Counterfactuals

First, we draw 5 counterfactual trajectories (under the chosen policy) for each of

the test trajectories, using the techniques described in Chapter 4. In Figure 7-2 we
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take the most common outcome across the counterfactual trajectories to assign each

individual to one of six categories, based on their factual outcome of 90-day survival

and their counterfactual outcome, which can include ‘no outcome’ (see Section 7.5 for

more discussion on this point).

Most notably, we find that very few patients have a negative outcome in the

counterfactual, and most of the patients who died would have lived. In the next

section we investigate this further by selecting a random trajectory from the latter

set of patients.
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Figure 7-2: Comparison of outcomes (90-day survival) between the observed and coun-
terfactual trajectories, on the test set. Most notably, under the counterfactual it is
estimated that very few patients would have died, and most of the patients who died
would have lived. However, 7% of patients have no outcomes in the counterfactuals,
due to a nuance discussed in Section 7.5

7.4 Inspection of Counterfactuals using the Full Medical

Record

As stated many times throughout this thesis, one of the main conceptual advantages of

using counterfactuals is that they are conceptually easier to ‘disprove’, and that faults

in the counterfactuals are a (heuristic) indication of faults in the learned model of the
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environment. In particular, by forcing our model to make counterfactual claims about

an actual patient, we can bring additional side-information to bear on scrutinizing

the conclusions. To that end, we present an illustrative example in this section, where

we review the medical record of a patient alongside their counterfactual trajectories.

In particular, we take a randomly selected patient from among those who died but

‘would have lived’ under all their estimated counterfactual trajectories.

We began by reviewing the clinical notes for this patient (the de-identified notes

are available in MIMIC-III) with an infectious disease clinician2. A summary of the

major takeaways from reviewing those notes:

• Cause of admission: This patient was admitted after collapsing, with initial

suspicion that this was due to either a respiratory or cardiac failure, and was

taken immediately to the cath lab where cardiac causes were ruled out. Chest

imaging showed a large amount of fluid around the right lung, and a large

mass in the lower right lobe. This was discovered to be State IIIA lung cancer,

suggesting the possible etiology of the patients’ presentation to be cardiovascular

collapse and a post-obstructive pneumonia secondary to compression from the

mass.

• Treatment before and during ICU: Cardiovascular compromise and inflamma-

tion from pneumonia contributed to the build up of a large amount of fluid in

the pleural space. Thus, clinicians elected to place a chest tube, which sub-

sequently drained >1L of serous fluid. The patient’s clinical status responded

rapidly, suggesting the external compression from the fluid was a major con-

tributor to his ICU course. Antibiotics and vasopressors in this setting act as

temporizing measures until the definitive intervention of chest tube placement

could be performed.

• Cause of death: Despite the placement of a chest tube, the underlying prob-

lem of a large lung mass leading to cardiovascular compromise remained unad-

2Dr. Sanjat Kanjilal, MD, MPH, the Associate Medical Director of Clinical Microbiology at
Brigham & Women’s Hospital. We thank Dr. Kanjilal for all of his help with this work.
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dressed. Given the morbidity of the necessary chemotherapy, it was decided by

the providers, the patient and the family that further aggressive intervention

would not have been in the patient’s interests.

After reviewing the notes, we reviewed the counterfactual trajectories alongside

the factual trajectories. We present a condensed output in Figure 7-3, consisting of a

few important vital signs, and defer the full output to Figures 7-4-7-7.3 In particular,

we make the following observations

• No basis (in medical record) for proposed actions: Recall that the patient was

in fluid overload due to congestive heart failure and capillary leakage, which

were themselves the result of the adjacent lung mass. The optimal approach

in this setting is to carefully reduce the cardiac afterload using diuretics and

anti-hypertensives, as well as drainage of the pleural effusion. Thus, while

vasopressors and fluids are not grossly counter-indicated, they would have the

opposite effect — increasing the work of the heart because they increase cardiac

afterload, eventually resulting in worsening of the patients clinical status. Thus,

while in the early admission period it is not unreasonable to provide vasopressors

and fluids to maintain vital signs, there is a clinical trade-off, and there is no

support in the medical record for giving maximum dose of vasopressors in the

early stages, present in several of the counterfactual trajectories.

• Consequences of proposed actions are not reflected in CF trajectories: As

noted, the alternative policy gives the maximum dose of vasopressers early on.

However, the first 12 hours (first 3 time periods) look almost identical in the

3How to read counterfactual trajectories: To visualize the counterfactual trajectories, we map the
patient state back to the original space of variables. To do so, we used the median of each feature
in each cluster (across the entire dataset), though this is not entirely reliable, as can be seen by
comparing the black solid lines (the median values for the corresponding state in k-means) with the
black dotted lines, which indicate the true values of each variable. This mismatch is discussed further
in Section 7.5. To read the trajectories, note that the observed trajectory is given in black, and the
counterfactuals are given in light blue, with both derived from the medians (for each feature) of their
respective states. Black dotted lines indicate the patient state without using k-means clustering. Red
crosses and green dots both indicate the end of the trajectory, as well as the outcome, with green
indicating 90-day survival and red indicating a lack thereof. Grey circles indicate no outcome in the
counterfactual. Red dotted lines indicate the middle 90% across all patients, in the original data
prior to k-means.
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counterfactuals to the actual trajectory, and do not reflect the expected effect

of additional vasopressors on blood pressure and other vital signs. In particu-

lar, maximum dose of vasopressors should have resulted in a significant blood

pressure response, which is not evident in these counterfactual trajectories.

• The anticipated outcomes are not credible given medical record: Most glar-

ingly, the anticipated outcomes (discharge from the ICU and 90-day survival)

are not credible given what we know about the patient from their medical record.

For instance, the first counterfactual trajectory ends in 8 hours (with subsequent

90-day survival). That stands in contrast to what we know from the medical

record, that the death of this patient was due to irreversible lung damage caused

by Stage IIIA lung cancer and pneumonia, neither of which would have been

resolved by this treatment.

Our review suggests an important possible limitation of the underlying learned

MDP and policy. Important features (such as the underlying infection and lung

cancer in this case) are not included in the model, but could reasonably impact both

the outcome of the patient as well as the treatment decisions of clinicians. This

issue also arises in a second trajectory that we randomly sampled (not shown here),

in which the clinical notes indicated that the patient died from complications due

to pre-existing Hodgkin Lymphoma and treatment in the ER (prior to admission

to the ICU) which triggered respiratory failure and irreversible lung injury. The

counterfactuals all indicated 90-day survival, contradicting the clinical notes which

suggest that by the time the patient entered the ICU, nothing more could be done.

In conclusion, if we are to fully trust a model of dynamics, and the policy that

is derived from it, then we would like to see a series of counterfactuals that ‘make

sense’ to a clinician, as a type of explanation and justification for why the RL policy

might have performed better than existing practice. As always, it is possible that

the structural causal model itself is incorrect in this case, but we present this method

as a useful (and simple) heuristic to apply, for generating hypotheses which could be

useful for iterating on the model and resulting policy.
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Figure 7-3: Five counterfactual trajectories (for selected features), two of which end
at 𝑡 = 15. See description in the main text for how to read counterfactuals. HR:
heart rate. BP: blood pressure. FiO2: fraction of inspired oxygen. SpO2: Peripheral
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88



0

1

Re
ad

m
iss

io
n

0

1

M
ec

h.
 V

en
t.

0.0

0.2

M
ax

 V
as

o 
Do

se

50

100

150

W
ei

gh
t (

kg
)

5

10

15

GC
S

75
100

HR

100

150

Sy
sB

P

75

100

M
ea

nB
P

50

75

Di
aB

P

20

30

RR

36

38

Te
m

p 
(C

)

0 2 4 6 8 10 12 14 16 18 20
Time Index (4hrs each)

0.25
0.50
0.75

Fi
O2

Figure 7-4: Example Trajectory including all features (Part 1/4). See description in
the main text.
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Figure 7-7: Example Trajectory including all features (Part 4/4). See description in
the main text.
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7.5 Challenges and Lessons Learned

There were a number of challenges in applying our methodology as imagined, some

of which are due to idiosyncrasies with the approach in Komorowski et al. (2018).

Specification of outcome The outcome used in the original paper was 90-day mor-

tality after discharge from the hospital, which was treated as an absorbing state.

Moreover, for each patient, a maximum of 20 time-steps (of 4 hours each) were al-

lowed, with the outcome always coming at the end of an observed trajectory. Thus,

it has the implicit interpretation of ‘discharge followed by [survival / death] after 90

days’. However, there is no guarantee that any model-based trajectory (including

the counterfactuals) will end within 20 steps, leading to some instances where the

counterfactual ends without an observed outcome.

Specification of states First, there are some idiosyncrasies with how state variables

were encoded in the original paper. For instance, every variable is included in the k-

means clustering, including those which should not fluctuate over the course of an ICU

stay (such as gender and age). Second, we observed that our approach to visualization,

of using the median value of each feature for each state, has some limitations. In

particular, perhaps due to not having a large enough set of discrete states, when we

‘impute’ the factual trajectory based on the discrete states and compare it to the

actual trajectory for those features, they are not always comparable. See Figure 7-8

for an example of this, taken from the same patient as above. This suggests that for

our method to be most useful, the MDP should either operate in the original state

space or operate in an invertible representation of it.

Estimation of behavior policy Because the behavior policy is derived using empir-

ical counts, and because rare actions are truncated, it leads to an estimated zero-

probability of several (observed) state/action pairs (including in the training set).

This makes WIS impossible to use, because it relies on each observed action having

non-zero probability. The solution to this taken in the original paper was to subtract
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Figure 7-8: Comparison of the imputed values (by taking the median of each feature
for each cluster) and the actual values for the same patient.

a small amount from every action that has a non-zero probability, and add it to the

other actions evenly. The way it was implemented in the supplied MATLAB code,

this could cause some actions to have negative probability, because the amount sub-

tracted was equal across observed actions. We resolved this in two ways: First, we

did not implement truncation for the purposes of learning the behavior policy. Sec-

ond, we softened the policy by instead adding a pseudo-observation of 0.01 to every

action/state pair which was never seen, in the empirical counts.

Empirical MDP In the original paper, empirical counts are used to estimate the

MDP, but does not result in a valid set of conditional distributions, because some

state/action pairs are never observed. This is critical for our approach, because
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we need the observed trajectories to have non-zero probability under the MDP to

calculate a counterfactual. Here we chronicle our efforts to resolve this, as well as

explaining our final resolution:

1. As an initial attempt to resolve this, we first introduced the notion that you

instantly die if you take an action that had never been taken, and used this

to learn the policy (so that it avoids those actions). This approach forced us

to re-learn the MDP on the test data for evaluation purposes, so avoid zero-

probability trajectories.

2. This proved to be an inadequate solution for running on test data, because it

results in a skewed model-based (and thus, counterfactual) estimate of reward;

While the policy takes actions that were observed in the training data, they

may not be observed in the test data, and by construction of our test MDP led

to instant death.

3. Thus, we settled on using a softened MDP for the counterfactual evaluations,

based only the training data, where we added a pseudo-observation of 10−3

for each transition, did not truncate observations, and did not use the ‘instant

death’ rule. We confirmed (see Table 7.3) that this did not meaningfully impact

the model-based estimate of reward under the RL policy, so we took it as a good

proxy for the original MDP used to learn the policy.

Table 7.3: Comparison of MDPs; 1000 model-based trajectories were averaged, and
this was done 10 times to give 90% confidence intervals

Approach Average Reward 90% interval

Train 89.68 (88.08, 91.11)
Train (Soft) 85.32 (83.74, 86.52)
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Chapter 8

Conclusion

Given the desire to deploy RL policies in high-risk settings (e.g., healthcare), it is

important to develop more tools and techniques to introspect these models and the

policies they learn. In this thesis, we have presented a general method for doing so,

which we call counterfactual policy introspection. Our approaches requires two inputs:

A policy to be inspected, and a model of the relevant decision-making problem. This

model could be a MDP or POMDP, or it could be any other learned graphical model

of the environment which can be represented as a directed acyclic graph. By making

general assumptions regarding the structure of causal mechanisms, we convert such a

model into a structural causal model which can be used to generate counterfactuals.

These counterfactuals serve several purposes:

1. First, they can be used to get a sense for which patients are driving the overall

model-based reward. Theoretically, if the SCM is well specified, the expected

counterfactual reward will be equivalent to the model-based reward. Anecdo-

tally, in both our real-data and synthetic experiments (where the model was

presumably not well-specified), we also found this to hold approximately.

2. Second, they can be used to highlight particularly interesting trajectories for fur-

ther manual inspection. In our experiments, we give the example of highlighting

patients who the model believes would have lived under the counterfactual, de-

spite dying in the real world.

97



3. Finally, they serve to provide a detailed ‘rationale’ for the estimated perfor-

mance of the policy, in terms of an expected counterfactual trajectory. These

trajectories seek to isolate the differences in intermediate and final outcomes

that are due to difference in actions, and can be reviewed along with side in-

formation (e.g., chart review in the medical setting) to identify flaws in the

conclusions, which may suggest flaws in the original model.

However, this approach does not come without its limitations. It requires knowing,

or making an untestable assumption about, the structural causal model: Here we

propose the Gumbel-Max SCM, which is an example of an SCM that may be realistic

in some settings. As revealed through our real-data experiment, our approach may

also work best when the environment is modelled directly in the original state space,

and the model of dynamics is not too brittle to handle unseen trajectories that may

arise in test data. Nonetheless, our real-data experiments give us hope that this might

be useful to researchers in the future, as a relatively straightforward method to debug

models and generate hypotheses for improving them.
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